DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA
SPECIAL PROVISION

PROJECT NUMBER: N/A
COUNTY: FULTON
P.I. No.: 0012586

SECTION 108 - PROSECUTION AND PROGRESS

Retain Sub-Section 108.08 as written and add the following:

108.08 Failure or Delay in Completing Work on Time

D: Restrictive Work Hours

1. Failure to re-open travel lanes as specified in Special Provision Section 150.6.A will result in the assessment of liquidated damages in the amount of $1000 per hour or portion thereof.

E: Milled Surfaces

Failure to cover milled surfaces as specified in Special Provision Section 150.6 will result in the assessment of liquidated damages in the amount of $300/hr.

per calendar day.
Add the following:

SECTION 150.6 SPECIAL CONDITIONS:

A. The Contractor shall not install lane closures, pace traffic or move equipment or materials that interferes with traffic on Ponce de Leon Avenue between the hours of 6:00 am to 9:00 am and 3:00 to 9:00 pm, Monday through Friday. No lane closures shall be allowed on Saturday or Sunday. At no time shall multiple lanes of Ponce de Leon Avenue be closed simultaneously.

B. Pedestrian access shall be maintained continuously at all times on one side of US78/US278/US29/SR8/Ponce de Leon Avenue. Sidewalk may only be demolished on one side of Ponce de Leon Avenue at any given time. Sidewalk detours shall be provided as necessary per GA STD Details T-20, T-21 and T-22.

C. Ingress and egress must be maintained at all existing driveways to remain at all times.

D. Streetscape construction shall not disturb more than 500 linear feet at any given time.

E. Contractor shall allow reasonable access to all parcels and remainders at all times.

F. All parking spaces shall be accessible during business hours within all parcels. Any paving/restriping within parking spaces shall be done during overnight (non-business) hours.

G. Once demolished, any given section of streetscape/landscape area (including storm drainage, hardscape, pavers, foundations and subsurface work) must reach substantial completion within 14 calendar days.

H. Unless otherwise noted, Contractor shall replace any impacted striping within easements in kind.

I. No driveway construction or work impacting driveway access to Parcel 23 shall occur during October, November or December.

J. No construction or work shall occur within 25 feet of Parcel 27 between November 15th and January 2nd of the following year.

K. No work impacting the driveway access of Parcel 23 shall occur between the hours of noon to 10pm.

L. Drive-thru access for Parcel 24 along BeltLine Connection Ramp and Wall construction shall remain unobstructed from 8am to midnight.

M. Contractor shall complete all work impacting drive lanes and/or parking spaces within Parcel 28 between the hours of 11:30pm and 6:30am, Sunday through Thursday only.
N. Contractor shall allow continuous, unfettered access to Parcel 27 during the following hours:
 a. Monday through Thursday, 8:00am to 12:00 midnight
 b. Friday and Saturday, 8:00am to 12:30am (the following day)
 c. Sunday, 11:30am to 9:00pm

O. Miscellaneous:
 a. Milled Surfaces:

All milled surfaces shall be covered before they are opened to traffic. Failure to cover milled surfaces with asphaltic concrete mix as required by the applicable typical section shall be considered a failure to comply with the requirements of Section 150 Traffic Control and shall result in the assessment of non-refundable deductions as specified in Special Provision Section 150.5.01 Enforcement and Adjustments.
Section 156— GPS Specifications for Conveyance Structures GIS Mapping

Delete Section 156 and substitute the following:

156.1 General Description
Perform the items of this work according to this Specification. This work includes:

- Collecting sub-meter locations and attributes for all stormwater structures, inlets, outlets, and conveyance means (excluding curb and gutter) within the project limits.
- Compiling, processing, and submitting the GIS data in accordance with the Department’s policies and guidelines.
- Maintaining quality control and quality assurance while performing the work.

156.1.01 Definitions
General Provisions 101 through 150

156.1.02 Related References
A. Standard Specifications
 General Provisions 101 through 150

B. Referenced Documents
 GDOT Policy: 8075-1-Database Design and Modeling
 GDOT Policy: 8075-5-Metadata Registry
 GDOT Policy: 8085-1- Geospatial Data Policy
 GDOT Policy: 8085-2- GPS Data Collection Policy

156.1.03 Submittals
General Provisions 101 through 150

156.2 Materials
General Provisions 101 through 150

156.3 Construction Requirements
General Provisions 101 through 150

156.3.01 Personnel
Furnish qualified personnel capable of performing the work in accordance with the Department’s above-stated policies and procedures.
Section 156—GPS Specifications for Conveyance Structures GIS Mapping

156.3.02 Accuracy
Ensure that data will be accurate within 1 yard (1 meter) horizontally for all assets. Collect and process data in accordance with the Department’s Policies and Procedures.

156.3.03 Coordinate System
Submit the data to the Department in accordance with GDOT Policy 8085-1-Geospatial Data Policy and Standards.

156.3.04 Format
Provide data in ESRI ArcGIS 10.2 or newer file-based geodatabase format.

156.3.05 Schema and Metadata
Provide all the data in compliance with database schema, metadata, and required fields files located at the following URL: http://www.dot.ga.gov/PartnerSmart/DesignManuals/OtherResources/GIS_Inventory.zip

156.3.06 Data Submittal
The data shall be submitted to the Engineer no later than the final inspection. All electronic file deliverables shall include the PI number and “MS4” in the file name.

156.4 Measurement
This work will not be measured separately for payment.

156.5 Payment
This contract item completed and accepted will be paid at the Lump Sum Price bid, and the payment will be full compensation for all work completed as specified in this Section.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 156</th>
<th>GPS Data Collection and Submittal</th>
<th>Per Lump Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Delete Section 515.1 and add the following:

515.1 General Description

This Work includes placing custom stainless steel safety railing with stainless steel mesh infill.

Add the following:

515.1.02 Referenced Documents

B. Referenced Documents

- AISI 316L
- ASTM A 276
- ASTM A 492
- ASTM A 666
- ASTM A 743
- ASTM A 743M
- ASTM C 1107
- ASTM E 488
- ASTM E 894
- ASTM E 935

515.1.03 Submittals

A. Action Submittals

1. Product Data: For the following –

 a. Manufacturer’s product lines of railings assembled from standard components.

 b. Shop drawings requiring accurate dimensional relationships to newly built or as-built construction shall be prepared following a review and confirmation of existing conditions to remain. Prepare shop drawings based on surveyed line and grade of newly built or as-built conditions that are scheduled to receive decorative metal railings.

2. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
3. Samples: For each type of exposed finish required.

4. Delegated-Design Submittal: For installed products indicated to comply with performance requirements and design criteria, including analysis data and calculations signed and sealed by the qualified professional engineer responsible for their preparation.

B. Informational Submittals

1. Qualification Data: For qualified professional engineer and testing agency.

2. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, according to ASTM E 894 and ASTM E 935.

3. Preconstruction test reports.

515.1.04 Performance Requirements

A. Delegated Design: Design railings, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Railings shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated:

1. Handrails and Top Rails of Guards:
 a. Uniform load of 50 lbf/ft. applied in any direction.
 b. Concentrated load of 200 lbf applied in any direction.
 c. Uniform and concentrated loads need not to be assumed to act concurrently.

2. Infill of Railings:
 a. Concentrated load of 50 lbf applied horizontally on an area of 1 sq. ft.
 b. Infill load and other loads need not be assumed to act concurrently.

C. Control of Corrosion: Prevent galvanic action and other forms of corrosion by insulating metals and other materials from direct contact with incompatible materials.

515.1.05 Preconstruction Testing

A. Preconstruction Testing Service: Engage a qualified testing agency to perform preconstruction testing on laboratory mockups.

1. Build laboratory mockups at testing agency facility; use personnel, materials, and methods of construction that will be used at project site.

2. Test railings according to ASTM E 894 and ASTM E 935.

515.1.06 Quality Assurance

A. Product Options: Information on Drawings and in Specifications establishes requirements for system’s aesthetic effects and performance characteristics. Do not modify intended aesthetic effects, as indicated on the Drawings and in Specifications, except with Owner’s Representative approval.

B. Mockups: Build mockups to verify selections made under sample submittals and to demonstrate aesthetic effects and set quality standards for fabrication and installation.

1. Build mockups for each form and finish of railing consisting of two posts, top rail, infill area, and anchorage system components.
Section 515 – Ferrous Metal Handrail, Special Design

2. Incorporate mockups of railing into one or more mockups for the granite masonry wall as required in Special Provision 999 – Granite Facing.

515.2 Materials

A. Manufacturers:

1. Stainless Steel Decorative Safety Railing with Stainless Steel Mesh Infill: Custom fabricated from the following components:

 a. Custom Stainless Steel Decorative Safety Railings: Subject to compliance with requirements, provide products by the following:

 SAFETY RAIL:
 Product: Stainless Steel Decorative Railing and Mesh Infill: Subject to compliance with requirements, provide products by one of the following:
 a. Carl Stahl DecorCable Innovations, LLC, Chicago, IL (www.decorcable.com)

B. Metals, General

1. Brackets, Flanges, and Anchors: Same metal and finish as supported rails unless otherwise indicated.

C. Stainless Steel:

b. Sheet, Strip, Plate, and Flat Bar: ASTM A 666, Type 316.

c. Bars and Shapes: ASTM A 276, Type 316.

d. Metal Mesh:

 Type 1: ASTM A 492 Type 316 stainless steel, 7x7 or 7x19 wire rope joined with Type 316 stainless steel ferrules.

 Cable Diameter x Mesh Aperture Dimensions:
 • 42” and 54” ht safety rail: 2.0 mm x 100mm
 • 102” ht safety rail: 2.0mm x 50mm

 Type 2: Type 316 Stainless Steel

 i. Perimeter Finishing:

 Type 1: Closed loops with loose ferrules for ‘sewn-on’ installation.

 Type 2: Stainless steel U-edge perimeter channel – custom 1” leg dimension. 11 gauge.

 ii. Direction (Grain) of Mesh:

 Type 1:
 a. Horizontal mesh direction for rectangular frame shapes.
 b. Diagonal mesh direction for staircases

 Type 2: Mount mesh panel parallel to vertical frame members

 iii. Ferrule Style:

 1. Seamless AISI 316L stainless steel ferrule.
iv. Support Frame Style:

1. Edge supports as shown on the Drawings constructed of stainless steel flat bars complying with ASTM A 276. Supports to be spaced no more than 5 feet apart, depending on composition and size of support bars.

D. Fasteners:

1. Fastener Materials: Unless otherwise indicated, provide the following:
 a. Stainless Steel Components: Type 304 Stainless steel fasteners.
 b. Dissimilar Metals: Type 304 stainless steel fasteners.

2. Anchors, General: Anchors capable of sustaining, without failure, a load equal to six times the load imposed when installed in unit masonry and four times the load imposed when installed in concrete, as determined by testing according to ASTM E 488, conducted by a qualified independent testing agency.

E. Miscellaneous Materials:

F. Fabrication:

1. General: Fabricate railings to comply with requirements indicated for design, dimensions, member sizes and spacing, details, finish, and anchorage, but not less than that required to support structural loads.

2. Connections: Fabricate railings with welded connections unless otherwise indicated.

3. Welded Connections: Cope components at connections to provide close fit, or use fittings designed for this purpose. Weld all around at connections, including at fittings.
 a. At exposed connections, finish exposed welds to comply with NOMMA’s “Voluntary Joint Finish Standards” for Type I welds: no evidence of a welded joint.

4. Mechanical Connections: Connect members with concealed mechanical fasteners and fittings.

5. Form changes in direction by inserting prefabricated elbow fittings.

6. Close exposed ends of hollow railing members with prefabricated end fittings.

7. Flanges, Fittings and Anchors: Provide flanges, miscellaneous fittings, and anchors to interconnect railing members to other work unless otherwise indicated.

8. Metal Mesh Infill Panels: Fabricate infill panels from metal mesh made from stainless steel.
 a. Infill panels shall be dimensioned and manufactured to specified size and labeled according to installer’s specifications.

G. Stainless Steel Finishes:

1. Directional Satin Finish: No. 4.
515.3 Construction Requirements

Delete Section 515.3.05 and add the following:

515.3.05 Construction

A. Installation:

1. Perform cutting, drilling, and fitting required for installing railings. Set railings accurately in location, alignment, and elevation; measured from established lines and levels and free of rack.

 a. Set stanchion posts perpendicular to wall coursing, within a tolerance of 1/16 inch in 3 feet.

 b. Align rails so variations from level for horizontal members (where applicable) and variations from parallel with rake of steps and ramps for sloping members do not exceed 1/4 inch in 12 feet.

2. Use steel anchors or pipe sleeves preset and anchored into concrete for installing posts. After posts have been inserted sleeves, fill annular space between post and sleeve with grout.

3. Anchor posts to metal surfaces as indicated using fittings designed and engineered for this purpose.

4. Metal Mesh Infill Panels: Install assembly to comply with manufacturer’s written instructions and the approved shop drawings.

 a. Provide anchored devices and fittings to secure to in-place construction; including threaded fittings for concrete inserts, toggle bolts and through-bolts. Install mesh panel infill system plumb, level, square, and taut.

 b. Anchor railing system to mounting surfaces as indicated on the drawings.

 c. Separate dissimilar materials with bushings, grommets or washers to prevent electrolytic corrosion.

 d. Use manufacturer’s supplied mounting hardware.

 e. Terminate and tension mesh panels in accordance with manufacturer’s instructions.

 f. Ensure mesh is clean, and without waves, kinks, or sags.

 g. Adjust frame support cable tension and connecting hardware.

5. Stainless Steel Illuminated Decorative Railings: Install assembly to comply with railing manufacturer’s written instructions and with requirements in other Part 3 articles.

B. Cleaning:

1. Remove temporary coverings and protection of adjacent work areas.

2. Clean installed products in accordance with manufacturer’s instructions before Owner’s Representative acceptance. Do not use chlorine-based or abrasive cleaners.

3. Remove from project site and legally dispose of construction debris associated with this work.

C. Protection:

1. Protect installed product from damage during subsequent construction activities.
Add the following:

515.4 Measurement
The accepted safety rail and handrail quantities are measured per linear foot (LF) in place in the completed work.

515.5 Payment
Safety rail is measured at the unit price bid for each unit complete and in place as specified.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 515</th>
<th>Decorative Metal Railing, Spcl Design</th>
<th>LF</th>
</tr>
</thead>
</table>

End of Section 515
Delete Sub-Section 520.3.05.B and substitute the following:

520.3.05.B. Drill Pilot Holes

When pilot holes are required, drill them to the diameter and approximate depth specified on the Plans.

Backfill voids and holes with Class A or better concrete. Furnishing and placing backfill concrete is an incidental part of the work.

The following are not considered pilot holes:

- Holes created by spudding (punching)
- Holes dug to drive piling that is too long to fit leads
- Holes dug to replace a template (if permitted)

Where pilot holes are required in granular material and the material cannot be sealed off using “mudding” drilling methods, drill the pilot hole as follows:

1. Place a casing pipe with a large enough diameter around the boring device.
2. Hold the casing in position until the pilot hole is completed and the pile driving progresses deep enough into the hard material to keep loose material out of the pilot hole.

The use of casing is incidental to the work.

Office of Materials and Testing
Add the following:

607.1 General Description
Section includes the following application of stone masonry:
1. Anchored to concrete backup.

607.1.01 Definitions
General Provisions 101 through 150.

607.1.02 Related References
A. Standard Specifications
1. Section 834- Masonry materials
2. Section 833- Joint fillers and sealers
B. Referenced Documents
1. ACI 530.1
2. ASCE 6
3. ASTM A 240
4. ASTM A 666
5. ASTM C 144
6. ASTM C 150
7. ASTM C 207
8. ASTM C 270
9. ASTM C 615
10. ASTM D 1227
11. ASTM D 4479
12. TMS 602

607.1.03 Submittals
Section 607 – Stone Wall Facing

A. Comply with submittal requirements of Section 00 72 13 – General Conditions, Part 7 – Working Drawing, Shop Drawings, Data on Materials and Equipment, Samples, and Licenses.

B. Shop Drawings: Indicate concrete structural core wall and reinforcing; elevations at footing, concrete shelf, top of concrete core wall, and top of finished wall indicating stepping as required; anchorage material; embeds; surface pattern(s), mortar joints; and cap stone. Shop drawings should show full elevations of walls, including inside and outside corner conditions with embed plates, safety rails, and other information that relates to granite facing. Shop drawings for site metal items requiring accurate dimensional relationships to newly built or as-built construction, shall be prepared following a review and confirmation of existing conditions to remain. Provide same for existing or as-built measurements and conditions for areas scheduled to receive miscellaneous metal items by the installer. Fabricator of materials is responsible for verifying the accuracy of the measurements prior to fabrication.

C. Product Data: For each type of product indicated.

D. Material Test Reports:
 1. Sealant Compatibility and Adhesion Test Report: From sealant manufacturer indicating that sealants will not stain or damage stone. Include interpretation of test results and recommendations for primers and substrate preparation needed for adhesion.

607.1.04 Quality Assurance

A. Mockups: Build a mockups for each pattern of stone masonry shown on Drawings, in a vertical orientation simulating a wall face; not less than 72 inches by 72 inches (30 inches by 72 inches for seat wall); to demonstrate typical joints, surface color, pattern, and texture, and standard of workmanship.
 1. Include stone coping at top of mockup.
 2. Include a sealant-filled joint at least 16 inches long in each mockup.
 3. Include stainless steel safety rail in the mockup.

B. Preinstallation Conference: Conduct conference at Project site.

607.1.05 Project Conditions

A. Protection of Stone Masonry: During construction, cover tops of walls, projections, and sills with waterproof sheeting at end of each day’s work.

B. Cold-Weather Requirements: Do not use frozen materials or materials mixed or coated with ice or frost. Do no build on frozen substrates. Comply with cold-weather construction requirements contained in ACI 530.1/ASCE 6/TMS 602.
 1. Cold-Weather Cleaning: Use liquid cleaning methods only when air temperature is 40 deg F and above and will remain so until masonry has dried.

607.2 Materials

Ensure that materials meet the requirements of the following specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stone for Masonry</td>
<td>834</td>
</tr>
<tr>
<td>Mortar and Grout</td>
<td>834</td>
</tr>
</tbody>
</table>
A. Granite
 a. Products: Subject to compliance with requirements, provide the following:
 i. Elberton Granite thick stone ashlar veneer; 3” nominal thickness; height and length
 as shown on Drawings; Finish B – split-face finish.
 ii. Elberton Granite cap stone; 4” thickness; height and length as shown on Drawings;
 thermal finish.

B. Mortar Materials
 1. Portland Cement: ASTM C 150, Type I or II, except Type III may be used for cold-weather
 construction. Provide natural color or white cement as required to produce mortar color indicated.
 2. Hydrated Lime: ASTM C 207, Type S.
 3. Aggregate: ASTM C 144 and as follows.
 a. For pointing mortar, use aggregate graded with 100 percent passing No. 16 sieve.
 4. Water: Potable

C. Veneer Anchors
 1. Materials:
 a. Stainless-Steel Sheet: ASTM A 240 or ASTM A 666, Type 304.
 2. Metal Anchors: Not less than 0.030-inch-thick by 7.8-inch-wide stainless-steel sheet with corrugations
 having a wavelength of 0.3 to 0.5 inch and an amplitude of 0.06 to 0.10 inch.
 a. Dovetail Masonry Anchor –utilize product of one of the following:
 i. Manufacturer: Hohmann and Barnard, Inc. Product: 315 Flexible Dovetail Brick Tie.
 iii. Manufacturer: Heckmann Building Products, Inc. Product: #103-C Dovetail
 Triangular Veneer Anchor.

D. Miscellaneous Masonry Accessories
 1. Asphalt Dampproofing: Cut-back asphalt complying with ASTM D 4479, Type I or asphalt emulsion
 complying with ASTM D 1227, Type III or IV.

E. Masonry Cleaners
 1. Proprietary Acidic Cleaner: Manufacturer’s standard-strength cleaner designed for removing mortar
 and grout stains, efflorescence, and other new construction stains from stone masonry surfaces without
 discoloring or damaging masonry surfaces; expressly approved for intended use by cleaner
 manufacturer and stone producer.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the
 following:
 i. Diedrich Technologies, Inc.
 ii. Dominion Restoration Products.
 iii. EaCo Chem, Inc.
 iv. Hydrochemical Techniques, Inc.
 v. Prosoco, Inc.

F. Mortar Mixes
 1. General: Do not use admixtures unless otherwise indicated.
Section 607 – Stone Wall Facing

- a. Do not use calcium chloride.

 - a. Mortar for Setting Stone: Type N.
 - b. Mortar for Pointing Stone: Type O.

G. Fabrication

1. Cut stone to produce pieces of thickness, size, and shape indicated, including details on Drawings. Dress joints (bed and vertical) straight and at right angle to face unless otherwise indicated.

2. Shape stone for type of masonry (pattern) as follows:
 - a. Sawed-bed, range ashlar with uniform course heights and uniform lengths as shown on Drawings.

3. Finish exposed faces and edges of stone to comply with requirements indicated for finish and to match approved samples and mockups.
 - a. Face Finish A: Thermal or Polished, as shown on Drawings.
 - b. Face Finish B: Split-face.

 i. Finish exposed ends of copings same as other exposed faces.

607.3 Construction Requirements

A. Preparation

1. Coat concrete backup with asphalt dampproofing. Refer to Section 07 11 00.

B. Setting of Stone Masonry, General

1. Perform necessary field cutting and trimming as stone is set.
 - a. Use power saws to cut stone that is fabricated with saw-cut surfaces.
 - b. Use hammer and chisel to split stone that is fabricated with split surfaces.

2. Sort stone before it is placed in wall to remove stone that does not comply with requirements relating to aesthetic effects, physical properties, or fabrication, or that is otherwise unsuitable for intended use.

3. Arrange stones in range ashlar pattern with uniform course heights, uniform lengths, and uniform joint widths as shown on the Drawings.

4. Arrange stones with finish variations uniformly dispersed for an evenly patterned appearance.

5. Maintain uniform joint widths except for variations due to different stone sizes and where minor variations are required to maintain bond alignment if any. Lay walls with joints not less than 3/8 inch at narrowest points or more than ½ inch at widest points.

6. Provide sealant joints of widths and at locations indicated.
 - a. Keep sealant joints free of mortar and other rigid materials.
 - b. Materials and procedures for sealing joints are specified in Section 07 92 00 “Joint Sealants.”

C. Construction Tolerances

1. Variation from Plumb: For vertical lines and surfaces, do not exceed 3/8 inch in 20 feet or more. For external corners, expansion joints, control joints, and other conspicuous lines, do not exceed ¼ inch in 20 feet or ½ inch in 40 feet or more.

2. Variation from Level: For bed joints, horizontal grooves, and other conspicuous lines, do not exceed ¼ inch in 20 feet or ½ inch in 40 feet or more.
3. Variation of Linear Layout Line: For position shown in plan, do not exceed ½ inch in 20 feet or ¾ inch in 40 feet or more.

D. Installation of Anchored Stone Masonry

1. Anchor stone masonry to concrete with corrugated-metal veneer anchors unless otherwise indicated. Secure anchors by inserting dovetailed ends into dovetail slots in concrete.

2. Embed veneer anchors in mortar joints of stone masonry at least halfway, but not less than 1-1/2 inches, through stone masonry and with at least 5/8-inch cover on outside face.

3. Provide two (2) anchors per stone positioned 9 inches from ends on alternating horizontal courses of stone masonry. Install additional anchors within 12 inches of sealant joints and at perimeter of wall at intervals not exceeding 12 inches.

4. Set stone in full bed of mortar with full head joints unless otherwise indicated. Build anchors into mortar joints as stone is set.

5. Rake out joints for pointing with mortar to depth of not less than ¾ inch. Rake joints to uniform depths with square bottoms and clean sides.

E. Pointing

1. Prepare stone-joint surfaces for pointing with mortar by removing dust and mortar particles. Where setting mortar was removed to depths greater than surrounding areas, apply pointing mortar in layers not more than 3/8 inch deep until a uniform depth is formed.

2. Point stone joints by placing and compacting pointing mortar in layers not more than 3/8 inch deep. Compact each layer thoroughly and allow to become thumbprint hard before applying next layer.

3. Tool joints, when pointing mortar is thumbprint hard, with a smooth jointing tool to produce the following joint profiles:
 a. Vertical Joint Profile: Smooth, flat face flush with edges of stone.
 b. Horizontal Joint Profile: Smooth, flat face recessed ¼ inch below edges of stone (raked joint.)

F. Adjusting and Cleaning

1. In-Progress Cleaning: Clean stone masonry as work progresses. Remove mortar fins and smears before tooling joints.

2. Final Cleaning: After mortar is thoroughly set and cured, clean stone masonry as follows:
 a. Remove large mortar particles by hand with wooden paddles and nonmetallic scrape hoes or chisels.
 b. Test cleaning methods on mockup; leave one-half of panel uncleared for comparison purposes.
 c. Protect adjacent stone and nonmasonry surfaces from contact with cleaner by covering them with liquid strippable masking agent, polyethylene film, or waterproof masking tape.
 d. Wet wall surfaces with water before applying cleaner; remove cleaner promptly by rinsing thoroughly with clear water.
 e. Clean stone masonry with proprietary acidic cleaner applied according to manufacturer’s written instructions.

G. Excess Materials and Waste

1. Disposal as Fill Materials: Dispose of clean masonry waste, including mortar and excess or soil-contaminated sand, by crushing and mixing with fill material as fill is placed.
 a. Do not dispose of masonry waste as fill within 48 inches of finished grade.

607.4 Measurement

The accepted granite facing quantities are measured per square face foot of granite facing. Per each square face foot in place in the completed work. The unit price includes the cost of the wall coping.
607.5 Payment

Granite facing is paid for at the unit price bid per each unit complete and in place as specified, and includes the cost of wall coping. The payment is full compensation for all excavation, furnishing, and installation of each square face foot of wall, including preparation of concrete footings and core walls, concrete reinforcement, and grout. Also includes disposal of excavated materials, and the cost of furnishing all tools, safety devices, labor, equipment and all other necessary items to complete the work. Granite coping for 5” x 15” and 10” x 30” module walls is paid for each linear foot complete and in place as specified.

Payment will be under:

<table>
<thead>
<tr>
<th>Item No. 607</th>
<th>Stone Facing</th>
<th>SF</th>
</tr>
</thead>
</table>
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SPECIAL PROVISION
COUNTY: FULTON
PI NO: 0012586

PONCE DE LEON AVENUE COMPLETE STREET RETROFIT AND BELTLINE CONNECTION

Section 660—Sanitary Sewers

Delete Section 660 and substitute the following:

660.1 General Description
This Work consists of furnishing materials, labor, tools, equipment, and other items necessary for installing, removing, abandoning, relocating, and adjusting sanitary sewer and force main systems and appurtenances to the Plans and Specifications.

660.1.01 Definitions
A. General Provisions 101 through 150
B. The term “City” or “DWM” shall be understood to mean City of Atlanta, Department of Watershed Management, its subsidiaries, successors and/or assigns, hereafter referred to as Utility Owner.
C. The term “Project Manager” shall mean the authorized individual having the authority to give instructions pertaining to the work and to approve or reject the work. The “Project Manager” shall not however be authorized to revoke, alter, enlarge, relax, or release any requirements of the Contract, Plans, and Specifications, nor shall they act as an agent for the Contractor. All Contract items pertaining to the Utility Owner shall be coordinated with the Georgia Department of Transportation’s (GDOT) Project Coordinator and the Utility Owner.

660.1.02 Related References
A. Standard Specifications
 Section 104—Scope of Work
 Section 107—Legal Regulations and Responsibility to the Public
 Section 108—Prosecution and Progress
 Section 205—Roadway Excavation
 Section 207—Excavation and Backfill for Minor Structures
 Section 210—Grading Complete
 Section 400—Hot Mix Asphaltic Concrete Construction
 Section 444—Sawed Joints in Existing Pavements
 Section 500—Concrete Structures
 Section 600—Controlled Low Strength Flowable Fill
 Section 611—Relaying, Reconstructing, or Adjusting to Grade of Miscellaneous Roadway Structures
B. Related Documents

1. General Provisions 101 through 150.
2. All products supplied and all work performed shall be in accordance with The Facility Owner’s Standard Specifications, applicable standards from American Society for Testing and Material (ASTM), American Water Works Association (AWWA), American National Standards Institute (ANSI), GDOT Utility Accommodation Policy and Standards, and the Georgia Environmental Protection Division (EPD) Guidelines for Sewage Collection Systems. Latest revisions of all standards shall apply.

660.1.03 Submittals

A. General Provisions 101 through 150.

B. Refer to The Facility Owner’s Standard Specifications, current published edition, for sanitary sewer utility submittal requirements. Copies of all submittals and documentation shall be submitted to GDOT, who shall distribute to the Utility Owner.

C. Shop Drawings / Product Data

1. Submit 6 copies of the following submittals to the GDOT Project Coordinator:
 a. Product data, including size, dimension, capacity, pressure rating, accessories, and special features, installation instructions, and operating characteristics for all proposed materials to show compliance with the requirements of this Special Provision.
 b. Test reports specified in the Quality Acceptance section of this Special Provision.
 c. Pipe manufacturer certification of compliance with specifications.
 d. Operation and maintenance literature, warranties, and other specified information.

D. Construction Record Documentation

1. The Contractor shall record on two set of utility as-built drawings that will record changes and deviations from the Contract Drawings in sizes, lines or grade. Record also the exact final horizontal and vertical locations of underground utilities and appurtenances to an accuracy of +/- 0.2 feet, referenced to permanent surface improvements. Drawings shall utilize State Plane Coordinates and shall be legibly marked to record actual construction and submitted to the GDOT no later than 30 days after installation and prior to Final Acceptance of the Project. The Utility Owner shall determine if the utility record drawings are complete prior to Final Acceptance of the project.

2. Record Drawings shall be signed and sealed by a professional engineer or land surveyor registered in the State of Georgia.

3. Record Drawings shall also be submitted in digital format as indicated in accordance with the Department’s current Electronic Utility File Guidelines.

4. Except for standard bound materials, bind all 8.5”x11” (A4) documentation, including 11” x 17” (A3) drawings folded to 8.5”x11” (A4), in logical groupings in loose-leaf binders of either the 3-ring or plastic slide-ring type. Permanently and appropriately label each such bound grouping of documentation.

660.1.04 Quality Assurance

A. The Contractor shall comply with applicable codes, ordinances, rules, regulations and laws of local, municipal, state or federal authorities having jurisdiction over the Project.

B. Furnish manufactured items, pipe, fittings, valves, service components, and appurtenances from manufacturers having regularly produced such items as specified herein which have proven satisfactory in actual service, over at least a 2-year period, or as approved by the GDOT and Utility Owner.
C. Regardless of tolerances permitted by industry standards specified herein, GDOT Project Manager may reject pipe or appurtenances at the manufacturing plant or project site which have cracks, chips, blisters, rough interior or exterior surface, evidence of structural weakness, joint defects, or other imperfections that might in the opinion of the Project Coordinators contribute to reduced functional capability, accelerated deterioration or reduced structural strength.

D. The Utility Owner and the Utility Owner’s consultant shall have the right to visit and inspect the work at any time. The Utility Owner may also have an Inspector assigned to the project authorized to inspect portions or all of the utility work done and the preparation, fabrication, or manufacture of the materials to be used. The Utility Owner shall be able to advise GDOT Project Manager of any observed discrepancies or potential problems. The cost of these inspections shall be the responsibility of the Utility Owner.

E. GDOT shall notify the Utility Owner before authorizing any changes or deviations which might affect the Utility Owner’s facilities. Contractor shall notify GDOT and Utility Owner a minimum of 24 hours prior to beginning work on utilities.

F. The Utility Owner shall be notified by GDOT Project Manager when all utility work is complete and ready for final inspection. The Utility Owner shall be invited to attend the final inspection and may provide a corrections list to GDOT Project Manager prior to the final inspection.

G. The Contractor shall verify the actual location and depth of all utilities prior to construction. All utilities and structures shall be protected during construction. Any damaged facilities shall be repaired or replaced at the Contractor’s expense.

660.2 Materials

H. All materials provided shall be in conformance with the requirements and standards set forth in the Facility Owner’s specification document, current published edition.

660.2.01 Sanitary Sewer Piping Systems and Appurtenances

A. Ductile Iron Pipe and Fittings

Ductile iron pipe shall meet the latest edition of ANSI/AWWA C150/A21.50 and C151/A21.51 for the class and joint specified with a nominal laying length of 18 (5.5 m) to 20 feet (6 m). Joints for buried ductile iron pipe shall be mechanical or push-on joints. Unless specified otherwise in the Plans or The Facility Owner’s Standard Specifications, ductile iron pipe diameters 12 inch (300 mm) or less shall be minimum Pressure Class 350, while pipe diameters greater than 12 inch (300 mm) shall be minimum Pressure Class 250.

1. Ductile iron pipe for the interior of structures and above ground installations shall be flanged. Flanges shall be ductile iron and shall be threaded-on flanges conforming to ANSI/AWWA C115/A21.15 or cast-on flanges conforming to ANSI/AWWA C110/A21.10. The minimum class thickness for ductile iron flanged pipe to be threaded is Class 53.

2. Interior surfaces of ductile iron pipe and fittings shall be ceramic epoxy lined. Epoxy lining shall be 40-mil nominal dry film thickness. The interior of the ductile iron pipe and fittings shall not have been lined with any substance prior to the application of the specified lining material and no coating shall have been applied to the first 6 inches (150 mm) of the exterior of the spigot ends. The lining shall be applied by a competent firm with a successful history of applying linings to the interior of ductile iron pipe and fittings. Surface preparation, lining of pipe, coating of bell sockets and spigot ends, number of coats, and touch up and repair shall be in accordance with the manufacturer’s recommendations. The pipe or fitting manufacturer shall supply a certificate attesting that the applicator met the requirements of this specification; that the material used was as specified; that the linings have the nominal dry film thickness specified; and that the linings have no pinholes when tested with a nondestructive 2,500 volt test. Lined pipe and fittings shall be handled only from the outside of the pipe and fittings.

3. Ductile iron shall have an exterior asphaltic coating as specified in AWWA C151 for ductile iron pipe and AWWA C153/C110 for ductile iron fittings.

4. Buried ductile iron pipe and fittings shall be polyethylene encased at locations indicated on the Plans or as conditions warrant. Polyethylene encasement tubing shall be in accordance with ANSI/AWWA C105/A21.5 and ASTM A674 and shall have a minimum thickness of 8 mils. Polyethylene tubing shall be green in color to designate wastewater.
5. Fittings: Ductile iron fittings shall be epoxy coated and meet the requirements of ANSI/AWWA C153/A21.53 or ANSI/AWWA C110 A21.10 with a minimum pressure rating of 250 psi. Pressure pipe fittings shall be restrained mechanical joint.

6. Mechanical Joint Fittings: Mechanical joints consisting of bell, socket, gland, gasket, bolts, and nuts shall conform to ANSI/AWWA C111/A21.11.

7. Push-On Joints: Push-on joints shall be designed in accordance with ANSI/AWWA C111/A21.11. Joint lubrication shall be as furnished by the manufacturer.

8. Rubber gasket joints for push-on or mechanical joints shall conform to the requirements of ANSI/AWWA C111/A21.11.

9. Restrained Joints: Restrained joints shall be provided as shown on the Plans and where required for thrust restraint. Restrained joints shall not require field welding or grooves cut into the pipe barrel for restraint. The restraining joints for mechanical joint fittings shall conform to the requirements of ANSI/AWWA C111/A21.11 with assembly in conformance with AWWA C600 and manufacturer’s recommendations. Restrained joints for pipe shall be mechanical joints with ductile iron retainer or push-on type joints and shall have a minimum working pressure of 250 psi.

10. Mechanical joint retainer glands may be used to restrain mechanical joint pipe and fittings to the plain end of ductile iron pipe and fittings. Restrainer glands shall be manufactured of ductile iron per ASTM A536.

11. Corrosion-resistant bolts used with ductile iron joints shall be high-strength, low-alloy steel as specified in ANSI/AWWA C111/A21.11.

12. Welded Outlets: Welded outlets in ductile iron pipe shall be provided where specified and indicated on the Plans. Outlets shall be fabricated by welding sections of ductile iron pipe manufactured in accordance with ANSI/AWWA C151/A21.51. Welded outlet pipe shall be fabricated only by the pipe manufacturer. The minimum ductile iron pipe thickness for fabrication of welded outlet pipe shall be Thickness Class 53 for 4 inch to 54 inch (100 mm to 1350 mm) diameter pipe. All joints on welded-on branch outlets shall be provided in accordance with the latest revision of ANSI/AWWA C111/A21.11 and/or ANSI/AWWA C115/A21.15 as applicable. After the outlets are welded together and prior to finishing, the assembly shall be subjected to a 15-psi air test for leakage. The maximum size and laying length of the welded-on branch outlet shall be recommended by the pipe manufacturer and acceptable to the Utility Owner for the field conditions and connecting pipe or valve.

B. Polyvinyl Chloride (PVC) Pipe

1. C900 PVC pipe diameters 4-inch (100 mm) through 12-inch (300 mm) shall meet ANSI/AWWA C900 requirements, and shall be a minimum pipe dimension ratio (DR) 18, Pressure Class 235 psi. C905 PVC pipe diameters 14-inch (350 mm) and greater shall meet ANSI/AWWA C905 requirements, shall be DR 18 minimum, Pressure Class 235 psi. Pipe shall have a bell with an integral wall section with a factory installed, solid cross section elastomeric ring in accordance with ASTM F477.

2. PVC solid wall gravity sewer pipe shall be integral bell and spigot joint pipe, and shall comply with ASTM D3034 for pipes 15-inch (380 mm) and smaller, with minimum standard dimension ratio (SDR) 26. Pipes larger than 15-inch shall comply with ASTM F679 with the minimum thickness as specified in the Plans or The Facility Owner’s specification document. Joints shall be of the bell and spigot gasketed type in accordance with ASTM D3212 and ASTM F477.

3. All PVC pipe shall be formulated for sunlight exposure and shall be green in color to designate wastewater.

4. PVC pipe shall have the same outside diameter (OD) as ductile iron pipe and be compatible for use with ductile iron fittings.

5. Fittings for PVC pipe 4 inches (100 mm) and larger shall be ductile iron mechanical joint and comply with the requirements set forth in the specifications for Ductile Iron Pipe and Fittings.

6. Restrained Joints: Restrained joints shall be provided as shown on the Plans and where required for thrust restraint. Restrained joints shall comply with the requirements set forth in the specifications for Ductile Iron Pipe.
and Fittings, with assembly in conformance with AWWA C600 and manufacturer’s recommendations.

7. Unless specified otherwise in the Plans or The Facility Owner’s specification document, 2-inch (50 mm) and 3-inch (80 mm) diameter PVC pipe shall conform to the requirements of ASTM D2241 Class 1120 or 1220 (SDR 21) with a working pressure rating of 200 psi with integral bell gasketed joints. Pipe is to be manufactured to IPS standard pipe equivalent outside diameters.

8. Schedule 80 PVC pipes smaller than 4-inch (100 mm) nominal diameter shall be in accordance with ASTM D1785. Schedule 80 pipe shall have threaded joints. Solvent cemented joints shall not be used. Threaded type fittings for Schedule 80 PVC pipe shall be in conformance with ASTM D2464. All threaded joints shall be watertight.

9. Flanges for Schedule 80 PVC pipe shall be rated for a 150 psi working pressure with ANSI B16.1 dimensions and bolting pattern. Flanges shall be connected to PVC piping with threaded joints in accordance with ASTM D2467 or ASTM 2464, respectively.

C. Fusible PVC Pipe

1. Fusible PVC pipe sizes 4-inch (100 mm) to 36-inch (900 mm) shall conform to AWWA C900/C905 as applicable and follow the dimension ratios (DR) set forth in the requirements listed for C900 PVC pipe.

2. Fusible PVC pipe shall be green in color to designate wastewater.

3. Fusible PVC pipe shall be extruded with plain ends. The ends shall be square to the pipe and free of any bevel or chamfer. There shall be no bell or gasket of any kind incorporated into the pipe.

4. Fusible PVC pipe shall be manufactured in a standard 40-foot nominal length or custom lengths as specified.

5. Fittings shall be made by butt fusing sections of pipe with manufacturer-approved equipment.

6. Fittings shall be ductile iron mechanical joint and comply with the requirements set forth in the specifications for Ductile Iron Pipe and Fittings.

D. High Density Polyethylene (HDPE) Pipe

HDPE pipe sizes 4-inch (100 mm) and larger shall be a PE 4710/3408 high density, extra-high molecular weight polyethylene manufactured from first-quality high density polyethylene resin containing no additives, fillers, or extenders. The HDPE pipe shall have an ASTM D3350 cell classification of PE 445574C, and shall meet the requirements of AWWA C906, and shall be sized based upon the ductile iron pipe size (DIPS), outside diameter (OD) sizing system. HDPE shall be a minimum DR 11, pressure class 160 psi. For gravity sewer pipe, the DR of the pipe shall be as indicated in the Plans or The Facility Owner’s Standard Specifications.

1. HDPE pipe shall be green or marked with a permanent green stripe to designate wastewater.

2. Joints shall be made by butt fusing sections of pipe with manufacturer-approved equipment.

3. Fittings shall be ductile iron mechanical joint meeting the requirements of ANSI/AWWA C110/A21.10 and ANSI/WWA C111/A21.11.

4. The pipe shall have fusion welded restrainer ring, follower gland, and a 12-inch (300 mm) stainless steel insert for the mechanical joint connection.

5. HDPE sewer mains shall be properly sized utilizing the inside diameter of the nominal pipe diameter. If during construction HDPE is substituted for other pipe materials, the Contractor shall verify that the inside diameter of the HDPE is the same or larger than the inside diameter of the pipe originally specified.

E. Concrete Pipe

1. Concrete pipe for gravity sewers shall be epoxy lined, reinforced concrete bell and spigot pipe with type two cement and calcareous aggregate conforming to ASTM C76 for Wall C pipe. Pipe shall be supplied in lengths of at least eight feet (2.5 m).

2. Pipe shall have rubber gasket type joints with steel end rings conforming to ASTM C443. A rectangular groove shall be supplied in the spigot end to receive the rubber gasket, and it shall be so formed to a rectangular shape and confined on all four sides. Bell and spigot surfaces shall be accurately formed and smooth to provide a close sliding
fit with a nominal clearance of 1/16-inch (1.5 mm).

3. Pipe shall not have cracks, blisters, imperfect surfaces, damaged ends, or damaged gasket grooves. Repaired or patched pipe or pipe with repaired or patched gasket grooves or shoulders shall not be used.
4. The testing of concrete pipe for crushing strength, absorption, hydrostatic requirements, and permeability shall be at the direction of the Utility Owner / GDOT Project Coordinators and shall be performed in accordance with ASTM C497.

F. Steel Casing Pipe
1. All materials, design, fabrication, handling, and testing of steel casing pipe shall conform to the requirements of ASTM A139, AWWA C200 and AWWA Manual M11 "Steel Pipe – A Guide for Design and Installation."
2. Steel casing pipe shall be new, smooth-wall, carbon steel pipe conforming to ASTM Specification A139, Grade B with minimum yield strength of 35,000 psi. Steel casings shall be used with the size, minimum thickness, length, and coating specified on the Plans or The Facility Owner’s specification document.
3. Additional anti-corrosion measures, as specified by the manufacturer or indicated on the Plans, shall be provided at connectors, couplings, rollers, restraints, etc.
4. Unless specified otherwise in the Plans or The Facility Owner’s specification document, casing pipe end seals shall consist of 3/8-inch (6 mm) thick flexible synthetic rubber boot with adjustable stainless steel banding straps. The annular space of the casing shall not be filled with concrete or grout.
5. Casing spacers shall consist of a stainless steel shell, PVC ribbed liner, and non-conducting separators to keep the carrier pipe from touching the casing pipe. Spacers shall be provided at a maximum of 10-foot intervals and within 2 feet (0.6 m) of the end of the casing pipe.

G. Cured-In-Place-Pipe (CIPP) Liners
1. CIPP liners shall be installed at the locations indicated on the Plans for the renovation of existing sanitary sewer pipes. The CIPP process shall consist of furnishing and inserting a resin-impregnated flexible tube within an existing sanitary sewer pipe and permanently forming the tube to the original conduit by curing with hot water under hydrostatic pressure or by a compressed air/stream combination.
2. CIPP pipeliner components shall be made from approved materials and manufactured in accordance with ASTM F1216, ASTM F1743, ASTM D5813, and ASTM D790.
3. CIPP tube shall meet the following criteria:
4. Made up of one or more layers of felt fabric
5. Meets or exceed ASTM F1216 or ASTM F1743, Section 5
6. Withstands installation pressure and is strong enough to bridge missing pipe sections where necessary.
7. Stretches to fit irregular pipe sections
8. After wetout (impregnating of the tube with resin), shall maintain a uniform thickness meeting or exceeding the design thickness when compressed at installation pressures
9. Sewn to a size fitting tightly within the internal circumference and length of the original pipe when installed and shall provide required allowance for circumferential stretching during inversion
10. Does not utilize overlapping layers of felt in longitudinal seams causing lumps in the final product
11. Utilizes an impermeable, flexible membrane coated on the outside layer of the tube prior to wetout to contain the resin and facilitate monitoring of resin saturation during the wetout procedure
12. Is homogenous across the entire wall thickness and contains no intermediate or encapsulated elastomeric layers
13. Does not utilize material in the tube causing delamination in the CIPP pipeliner
14. Seams in the tube are stronger than the non-seamed felt
15. Outside of the tube is marked for distance at regular intervals along its length. Marking intervals do not exceed 5 feet (1.5 meters) and include the Manufacturers name or identifying symbol.
16. CIPP resin system shall produce CIPP pipeliners which comply with the structural and chemical resistance requirements of this specification. Resin system shall be corrosion resistant, consist of a vinyl ester and catalyst system, and contain 5% or less resin filler. When properly cured within the tube composite, the resin shall meet or
17. CIPP pipeliners shall meet the following criteria:
18. Requirements of ASTM F1216, Appendix XI.
19. No bonding to original pipe wall assumed
20. Utilizes a long-term, time dependent flexural modulus value obtained from long-term testing results for flexural creep of the CIPP material installed by the installer on previous projects consisting of the same work
21. Utilizes a percentage of the instantaneous flexural modulus value as measured by ASTM D790 testing in design calculation for external buckling. Does not use values in excess of 50% unless substantiated by qualified independent testing laboratory data.
22. Produced using materials of equal quality or better than the materials used in the long-term test with respect to the initial flexural modulus used in design.
23. Utilizes an enhancement Factor “K” value of 7 for “partially deteriorated” design conditions. Does not use Enhancement (K) factors in excess of 7 unless substantiated by qualified independent testing laboratory data.
24. Produced with uniformly bonded layers. Any two layers cannot be cleanly separated with a probe or point of a knife blade or separated in a manner that allows the probe or knife to move freely between layers.
25. Produces with light, a reflective interior wall color to allow clear, detailed examination with closed circuit television inspection equipment.
26. Conforms to the structural properties listed in the following table:

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Cured Composite per ASTM F1216</th>
<th>Cured Composite (400k Resin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulus of Elasticity</td>
<td>ASTM D790 (short term)</td>
<td>250,000 psi (1,722,500 kPa)</td>
<td>400,000 psi (2,756,000 kPa)</td>
</tr>
<tr>
<td>flexural Stress</td>
<td>ASTM D790</td>
<td>4,500 psi</td>
<td>4,500 psi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(31,000 kPa)</td>
<td>(31,000 kPa)</td>
</tr>
</tbody>
</table>

a. Produced with a minimum wall thickness of ¼ in (6 mm) throughout the line. Wall thickness is based on the physical properties listed in the table above and the design equations in the appendix of ASTM F1216, using the design parameters listed in the following table:

<table>
<thead>
<tr>
<th>DESIGN PARAMETERS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Safety Factor</td>
<td>2.0</td>
</tr>
<tr>
<td>Retention Factor for Long-Term Flexural Modulus</td>
<td>1%-60%</td>
</tr>
<tr>
<td>(determined by long-term testing described above)</td>
<td></td>
</tr>
<tr>
<td>Ovality</td>
<td>2%</td>
</tr>
<tr>
<td>Enhancement Factor, k</td>
<td>7</td>
</tr>
</tbody>
</table>
b. Layers of the tube not saturated with resin prior to insertion into the existing pipe are not included in the structural CIPP pipeliner wall thickness computation.

c. Meets or exceeds chemical resistance requirements of ASTM F116, Appendix X2

d. Contains no dry or saturated layers

H. Pipe Detection Wire

Unless otherwise specified in the Plans or The Facility Owner’s Standard Specifications, open cut installations of non-metallic pipe shall include minimum #12 gauge tracing wire. Pipe installed by directional drill shall include two (2) insulated 8 gauge tracer wire. Wire shall be solid copper insulated with HDPE installed along pipe, wrapped around service line stub outs and stubbed into valve boxes for locating purposes. Wire shall be properly spliced to provide continuous conductivity.

I. Warning Tape

Sanitary sewer mains shall be installed with polyethylene film warning tape manufactured for marking and identifying underground wastewater utilities. Tape shall be a minimum of 2 inches (50 mm) wide and 4 mils thick, green in color, with continuously printed letters reading “CAUTION BURIED SEWER LINE BELOW”.

J. Gate Valves

1. Gate valves sizes 3-inch (80 mm) and larger shall be of the resilient seat type meeting the requirements of AWWA C509 or C515. Valves shall be iron body, bronze trimmed, with non-rising stems, and shall be fusion-bonded epoxy coated per ANSI/AWWA C550. Valves shall have a minimum design working pressure of 200 psi.

 Valves shall be manually operated by nut and open counter-clockwise unless specified otherwise in the Plans or The Facility Owner’s Standard Specifications.

2. The resilient seating arrangement shall provide zero leakage at the design working pressure when installed with line flow in either direction. All ferrous surfaces inside and outside shall have a fusion bonded epoxy coating. All valves shall be provided with O-ring seals. The design and machining of valves shall be such as to permit replacing the O-ring seals in the valves while in service without leakage.

3. All gate valves, when fully opened, shall have an unobstructed waterway diameter equal to or larger than the full nominal diameter of the valve.

4. In general, valves shall be designed for vertical installation. Valves installed in the horizontal position shall be provided with bevel gears, extended gear case, rollers, tracks, and scrapers.

5. Exposed or above-ground gate valves shall be outside screw and yoke (OS&Y) flanged joint type with an operating hand wheel. The face-to-face dimensions and drilling shall conform to ANSI B16.10 for Class 125 flanged joint end gate valves.

6. Valves shall include mechanical joints, bolts, glands, gaskets, and all other materials necessary to join to existing work.

7. Provide brass identification tag imprinted with “SEWER”, valve size, valve type, and direction and number of turns to open. Provide a ¼-inch (8 mm) hole in the brass tag and attach the tag to the end of the locate wire (twist wire around tag). Tag shall be 2-inch (50 mm) diameter and ⅛-inch thick brass with a ¼-inch (8 mm) hole.

K. Insertion Valves

1. Insertion type valves shall be resilient wedge gate valves designed to be installed into an existing pressurized force main without interruption of flow through the pipe and no reduction of line pressure.

 a. Valve shall be fusion-bonded epoxy coated in compliance with AWWA C550.

 b. The construction of the resilient wedge shall comply with AWWA C509 requirements.

 c. The resilient wedge shall be fully encapsulated with EPDM rubber and shall seat on the valve body and not the pipe. The resilient wedge shall be totally independent of the carrier pipe.

 d. Valve shall be restrained to the pipe.
Valves shall be suitable for operating pressures up to 250 psi.

L. Plug Valves
1. All plug valves shall be of the non-lubricated eccentric type with resilient faced plugs and shall comply with AWWA C517 requirements. The pipe connections shall be flanged or mechanical joint as required. Flanged valves shall be in accordance with ANSI B16.1, Class 125 and ANSI B16.5, Class 150. Mechanical joint valves shall be in accordance ANSI/AWWA C111/A21.11. Buried plug valves shall have mechanical joint ends. Valve and gearing shall be rated for a minimum of 150 psi pressure rating.

2. Valves shall be coated with an epoxy coating applied to both the exterior and the interior surfaces prior to assembly of the valves.

3. Unless specified otherwise in the Plans or The Facility Owner’s Standard Specifications, the port area shall be 100% of standard full pipe area. The body of the valve shall be constructed of cast iron ASTM A126 Class B. Valves shall be furnished with permanently lubricated stainless steel or oil-impregnated bronze upper and lower plug stem bushings. These bearings shall comply with current AWWA Standards. Both nut and gear operated valves shall have a 2-inch (50 mm) square nut for operation.

4. Provide brass identification tag imprinted with “SEWER”, valve size, valve type, and direction and number of turns to open. Provide a ¼-inch (8 mm) hole in the brass tag and attach the tag to the end of the locate wire (twist wire around tag). Tag shall be 2-inch (50 mm) diameter and ¼-inch (6 mm) thick brass with a ¼-inch (8 mm) hole.

M. Check Valves
1. Swing check valves sizes 4-inch (100 mm) through 30-inch (750 mm) shall be constructed of a cast iron body with a bronze seat ring, and a noncorrosive shaft for attachment of weight and lever. Check valves shall comply with AWWA C508 requirements and have a 150 psi minimum pressure rating.

2. The valve disc shall swing completely clear of the waterway when valve is fully open, permitting full flow. The disc shall be cast iron, rubber faced.

3. Check valves shall be flanged in accordance with ANSI 16.1, Class 125, and installed inside a vault or pit.

4. Provide brass identification tag imprinted with “SEWER”, valve size, valve type, and direction and number of turns to open. Provide a ¼-inch (8 mm) hole in the brass tag and attach the tag to the end of the locate wire (twist wire around tag). Tag shall be 2-inch (50 mm) diameter and ¼-inch (6 mm) thick brass with a ¼-inch (8 mm) hole.

N. Tapping Sleeves and Valve Assembly
1. Tapping sleeves and valves sizes 4-inch (100 mm) and larger shall be stainless steel with wraparound gasket style, or ductile iron of the split-sleeve, mechanical joint type. Tapping sleeves shall be rated for a minimum 150 psi working pressure in accordance with ANSI/WWA C110/A21.10.

2. When tapping an existing asbestos cement pipe, a stainless steel tapping sleeve which contains a full gasketed surface within the sleeve body shall be used due to variances in the manufactured outside diameter of the asbestos cement pipe.

3. Tapping sleeve shall have an outlet flange per ANSI B16.1, Class 125 standard.

4. The Contractor shall determine the outside diameter of the existing main before ordering the sleeve.

5. Tapping valves shall be mechanical joint outlet, non-rising stem, resilient seated gate valves meeting the applicable requirements of ANSI/WWA C509/C515 and C550 with a minimum design working pressure of 200 psi.

6. Tapping valves shall be specifically designed for pressure tapping with sufficient seat opening to allow full diameter taps to be made.

7. Tapping valves shall be manufactured with an integral tapping flange having a raised lip design.

8. Tapping valves shall be furnished with a combination flange and mechanical joint for connecting the branch to the main.

O. Valve Boxes

PI NO: 0012586
PONCE DE LEON AVENUE COMPLETE STREET RETROFIT AND BELTLINE CONNECTION
1. All valves shall be equipped with valve boxes. The valve boxes shall be heavy, roadway type boxes. The valve box cover shall be marked “SEWER VALVE” or “SEWER”.

2. Valve box materials shall conform to the requirements and standards set forth in The Facility Owner’s Standard Specifications.

3. The valve boxes shall be adjustable up or down from the nominal required cover over the pipe. Extensions shall be provided as necessary. A precast concrete ring shall be placed around the valve box opening when outside of paved areas.

4. Valves shall be furnished with extension stems as necessary to bring the operating nut to within 24 inches (600 mm) minimum of the top of the valve box.

P. Tapping Saddles
 1. Tapping saddles shall have ductile iron or bronze body with stainless steel, double-tie straps and nuts with pressure rating not less than that of the pipe to which it is to be connected.

 2. Saddles shall have a rubber gasket cemented to the body with compatible threading between the saddle and corporation stop. Saddles shall conform to ANSI/AWWA C800 standards.

 3. The tapping saddle shall provide full support around the circumference of the pipe, providing a bearing area of sufficient width so that pipe will not distort when the saddle is tightened.

Q. Concrete Vault
 1. Concrete vaults shall conform to the requirements and standards set forth in The Facility Owner’s Standard Specifications and standard details.

R. Air Release Valves
 1. Air release, air/vacuum valves, and combination air valves shall be suitable for use with wastewater and manufactured in compliance with ANSI/AWWA C512.

 2. Air release valves shall have a small venting orifice to vent the accumulation of air and other gases in the line or system under pressure.

 3. Air/vacuum valves shall have a large venting orifice to permit the release of air as the line is filling or relieve the vacuum as the line is draining or is under negative pressure.

 4. Combination air valves shall have operating features of both the air/vacuum valve and air release valve.

 5. Valves shall be suitable for pressures up to 250 psi.

 6. Air release, air/vacuum valves, and combination air valves shall conform to the requirements and standards set forth in The Facility Owner’s Standard Specifications and standard details.

S. Thrust Collars and Thrust Blocks
 1. Concrete used for thrust collars or thrust blocks on force mains shall meet the “Class A” requirements for concrete listed in Section 500.

 2. Thrust collars shall include welded-on collars attached by the pipe manufacturer or retainer glands. Concrete shall be poured continuous around the pipe and bear against undisturbed earth.

 3. Reinforcing steel shall meet the requirements set forth in the Plans or The Facility Owner’s Standard Specifications.

 4. Mechanical joint restraints shall be utilized in lieu of thrust blocks with the approval of the Utility Owner.

T. Manholes
 1. Manholes shall be precast concrete or as indicated in the Plans and per The Facility Owner’s Standard Specifications.

 2. The minimum diameter for manholes shall be 48 inches (1200 mm). The minimum diameter for inside drop manholes shall be 60 inches (1500 mm). Manhole Types and Classes are described in Section 668.
3. Precast reinforced manholes shall be manufactured in accordance with ASTM C478 and shall have a minimum wall thickness of 5 inches (127 mm). All concrete shall have a minimum compressive strength of 4,000 psi when tested in accordance with ASTM C478.

4. The bases shall be monolithically cast and shall consist of a manhole bottom and a wall which shall extend a minimum of 6 inches (150 mm) above the top of the highest in-flowing sewer. The top of the base section shall be tongue and groove section.

5. There shall be a minimum distance of 6 inches (150 mm) between the invert of the lowest out flowing sewer and floor of the precast base to provide for the construction of a formed invert and bench wall within the manhole. There shall be a minimum 0.05-foot drop between the inlet and outlet inverts. Inverts shall be constructed of 4,000 psi plant mix concrete. Bench shape and discharge of force mains into manholes shall conform to the requirements of the Georgia EPD Guidelines for Sewage Collection Systems.

6. Joints between precast sections shall be sealed by means of rubber O-ring gaskets or flexible butyl rubber sealant.

7. Manholes shall have factory applied coatings on the interior and exterior. Surface preparation and coating application shall comply with the manufacturer's recommendations.

8. Manhole sections shall be rejected if abused during shipping or placement and if pipe openings are not properly aligned.

9. A protective coating or lining for corrosion protection shall be applied to all interior surfaces of manholes when called for in the Plans or The Facility Owner's Standard Specifications.

10. Pipe entry holes shall be either precast or cored. Connections between reinforced concrete manhole structures and sewer pipe shall be flexible connectors conforming to ASTM C 923 latest revision.

11. Frame and covers shall be cast or ductile iron and set in a bed of mortar on the top of the manhole and flush with finished grade. Covers shall be marked as indicated in the Utility Owner standard details.

12. Watertight manhole rings and covers are to be used if the manhole is located within the 100-year floodplain boundary or may be flooded by street runoff.

13. Riser adjusting rings shall be a minimum of 3 inches (80 mm) on cone sections. Manhole adjustment rings shall be sealed with a flexible rubber seal.

14. Drop manhole: Inside or outside drop inlets shall be provided into sanitary sewer manholes for incoming lines having inverts 2 feet (0.6 m) or more above the inverts of the manhole outlet lines. Drop pipes shall be the same size as the sewer that they serve. Openings in walls of precast concrete manholes for outside drop connections shall not be made at joints. Outside drop piping materials and encasement/embedment shall be as indicated in the Plans. Concrete used to encase the outside drop piping shall be 4,000 psi plant mix concrete unless otherwise indicated on the Plans.

660.2.02 Delivery, Storage, and Handling

A. Handle pipe, fittings, valves, and accessories carefully to prevent damage. Handle pipe by rolling on skids, forklift, or front end loader. Do not use material damaged in handling. Slings, hooks, or pipe tongs shall be padded and used in such a manner as to prevent damage to the exterior coatings or internal lining of the pipe. Do not use chains in handling pipe, fittings, and appurtenances.

B. To unload pipe, carefully lift and lower it into position using approved padded slings, hooks, or clamps. Furnish equipment and facilities for unloading, handling, distributing, and storing pipe, fittings, valves, and accessories. Make equipment available at all times for use in unloading. Do not roll, drop or dump materials. Any materials dropped or dumped shall be subject to rejection without additional justification.

C. Stored materials including salvaged materials shall be kept in suitable areas safe from damage. The interior of all pipe, fittings, and other appurtenances shall be kept free from dirt or foreign matter at all times. Store and support plastic pipe to prevent sagging and bending. Store plastic pipe and gaskets to prevent exposure to direct sunlight. Valves shall be stored and protected from damage by freezing.

D. Pipe shall not be stacked higher than the limits recommended by the manufacturer. The bottom tier shall be kept off the ground on timbers, rails, or concrete.
660.3 Construction Requirements

660.3.01 Personnel
A. General Provisions 101 through 150.
B. Construction and installation of all wastewater utilities shall be performed by a Contractor prequalified/registered with GDOT.
C. All work specified in this section shall be performed by a Contractor with a valid Utility Contractor’s license issued by the State of Georgia. Sewer service line installation shall be performed by either a Utility Contractor licensed in the State of Georgia or by a Master Plumber licensed in the State of Georgia.

660.3.02 Equipment
A. Ensure all equipment used is in conformance with the requirements and standards set forth in The Facility Owner’s Standard Specifications.

660.3.03 Preparation
General Provisions 101 through 150.

660.3.04 Fabrication
General Provisions 101 through 150.

660.3.05 Construction
A. Finding Existing Underground Utilities and Obstructions
2. According to the best information available to GDOT, all known sewer lines, water lines, gas lines, telephone conduits, drainage structures, etc. are shown on the Plans. However, to find such installations, use an electronic pipe and cable finder for locating existing installations or obstructions to the work.
3. Obtain approval from GDOT Project Manager and the Utility Owner prior to disruption of wastewater services required for the installation of the facilities shown on the project Plans.

B. Jack and Bore
Comply with Section 615 for sewer main installations by jack and bore.

C. Directional Drilling
1. Install sewer mains and services by means of directional drilling at locations shown on the Plans or where approved by GDOT or Utility Owner. Provide submittals and follow all relevant procedures and requirements set forth in The Facility Owner’s Standard Specifications.
2. The Contractor shall not initiate horizontal directional drilling until all submittals are received, reviewed, and accepted by GDOT and the Utility Owner, and all required permits are obtained.
3. The Contractor shall select drilling additives and fluid mixture proportions to ensure continuous circulation, bore stability, reduce drag on the pipe, and completely fill the annular space between the bore and the pipe to ensure stability and control settlement.
4. The Contractor shall submit contingency plans for remediation of potential problems that may be encountered during the drilling operations. The contingency plans shall address the observations that would lead to the discovery of the problem and the methods that would be used to mitigate the problem. Potential problems that shall be addressed include:
 a. Loss of returns/loss of circulation of drilling fluid.
 b. Encountering obstruction during pilot bore or reaming/pullback.
 c. Drill pipe or product pipe cannot be advanced.
 d. Deviations from design line and grade exceed allowable tolerances.
e. Drill pipe or product pipe broken off in borehole.
f. Product pipe collapse or excessive deformation occurs
g. Utility strike.
h. Hydrolock occurs or is suspected.
i. Excessive ground settlement or heave of ground surface or existing utilities.
j. Inadvertent returns/hydrafracture or surface spills resulting in drilling fluids entering water or reaching the surface.

5. Pipe damaged in directional drilling operations shall be removed and replaced at no additional expense to GDOT or the Utility Owner.

6. Voids developed or encountered during the installation operation shall be pressure grouted with a grout mix approved by GDOT.

7. Installation shall include a locatable conduit system, with identification markers on each side of GDOT right-of-way where applicable. Two (2) insulated 8 gauge solid copper tracers wire shall be attached to the leading end of the pipe pulling head and shall extend the full length of the installed pipe.

8. The location and alignment of the pilot drill progress shall be continuously monitored for compliance with the proposed installation alignment and for verification of the depth of the bore. Monitoring shall be accomplished by computer generated bore logs which map the bore path based on x, y, z coordinate information provided by the locating/tracking system. Readings or plots shall be obtained on every drill rod, and shall be provided to the Inspector on a daily basis. Deviations between the recorded and design bore path shall be calculated and reported on the daily log. If the deviations exceed tolerances specified elsewhere, such occurrences shall be reported immediately to GDOT. The Contractor shall undertake all necessary measures to correct deviations and return to design line and grade.

9. Upon completion of the directional drill the Contractor shall furnish GDOT and the Utility Owner an as-built drawing along with a report of the monitoring of the drilling fluids during the pilot hole and back reamed hole.

10. Drilling fluid pressures, flow rates, viscosity, and density shall be monitored and recorded by the Contractor. The pressures shall be monitored at the pump. These measurements shall be included in daily logs submitted to GDOT. The Contractor shall document modifications to the drilling fluids, by noting the types and quantities of drilling fluid additives and the dates and times when introduced. The reason for the addition of drilling fluid additives or other modifications shall be documented and reported.

11. Management and disposal of drilling fluids shall be the Contractor’s responsibility. Excess drilling fluids shall be contained at the entry and exit points until recycled or removed from the site. All drilling fluids shall be disposed of in a manner acceptable to the appropriate local, state and federal regulations. The Contractor’s work will be immediately suspended by GDOT whenever drilling fluids seep to the surface other than in the boring entrance or exit pit, or when a paved surface is displaced.

12. Surfaces damaged by the work shall be restored to their preconstruction conditions at no additional cost to GDOT or Utility Owner, and with no increase in contract time.

13. The following items shall be as shown on the Plans, unless otherwise approved in writing by GDOT:
 a. Entry / exit points
 b. Drill entry / exit angles
 c. Pilot bore path
 1) Radius of Curvature
 2) Entry / exit tolerances: Contractor shall be solely responsible for all work necessary to correct excessive deviations from line and grade, including re-drilling, redesigning connections, and acquiring additional easement, at no additional cost to GDOT or Utility Owner and without schedule extension.

14. The pilot bore shall be pre-reamed and reamed using equipment and methods submitted by the Contractor. The Contractor shall completely ream the bore to the final diameter prior to pullback.
15. Pullback: The pipe shall be installed by pulling it into the reamed bore path in a continuous operation, behind a final reaming tool selected by the Contractor. The pipe shall be isolated from excessive torsional and axial stresses by a swivel device with a pre-established breakaway tensile capacity that is lower than the allowable tensile strength of the pipe. The maximum pull (axial tension force) exerted on the pipelines shall be measured continuously and limited to the maximum allowed by the pipe manufacturer with an appropriate factor of safety so that the pipe or joints are not overstressed. The end of the pipe shall be closed during the pull back operation.

16. Pipelines shall be adequately supported during installation so as to prevent overstressing or buckling. The Contractor shall provide adequate support/rollers along the pipe layout area to support the required length of pipe for the bore. The pipe layout area shall be cleared of all large stones, construction debris, or other foreign objects that could damage the pipe during pullback. The Contractor shall monitor and inspect pipe rollers and method for suspending pipe at entry during the pullback operation to avoid damage to the pipe.

17. The end of the pipe shall be closed during the pull back operation.

18. Each length of pipe shall be inspected and cleaned as necessary to be free of debris immediately before joining.

19. The Contractor shall at all times handle the pipe in a manner that does not overstress or otherwise damage the pipe. Vertical and horizontal curves shall be limited so that wall stresses do not exceed 50% of yield stress for flexural bending of the pipe. If the pipe is buckled or otherwise damaged, the damaged section shall be removed and replaced by the Contractor at his expense. The Contractor shall take appropriate steps during pullback to ensure that the pipe and tracer wires will be installed without damage.

20. If necessary, the pipe shall have water added as it enters the bore to achieve neutral buoyancy and reduce pullback loads and to ensure that adequate internal pressure is maintained at all points to counter balance collapse pressures.

21. The Contractor shall cease pullback operations if the pipe is damaged and shall remove the pipe from the bore and repair the pipe using the manufacturer’s recommended procedure or replace the damaged pipe before resuming installation.

22. Damage to the pipe resulting from manufacturer defects, installation, or grouting is the responsibility of the Contractor, including costs for replacement and labor and materials. To confirm no damage to the pipe, upon completion of pull back, the Contractor shall pull a sphere or pig through the entire length of the pipeline. The pig shall be one inch less in diameter than the internal diameter of the product pipe, capable of allowing water to pass through it, complete with a pulling cable on either side. If the pig or sphere cannot pass through the pipe, it shall be considered collapsed and damaged.

23. After the carrier pipe is completely pulled through the bore, a sufficient relaxation period as recommended by the pipe manufacturer shall be provided before the final pipe tie-in.

24. The Contractor shall conduct a final hydrostatic test of the installed pipeline. Final test shall be in accordance with these specifications. The Contractor shall repair any defects discovered during this test, and repeat until the pipe passes the test.

D. Excavating Trenches

1. The Contractor shall provide all necessary shoring and bracing materials as required to assure safe working conditions and to protect the excavations. The Contractor shall be required to fully comply with all applicable OSHA Excavation Safety Standards. No separate payment shall be made for any special procedure used in connection with the excavation.

2. Excavate trenches to the proper depth and width as follows:
 a. Trench to Grade: Excavated trench bottoms shall be firm, free from boulders, and conform to the established grade. Limit open trench excavation to a maximum of three 300 feet (90 m) ahead of completed backfill.
 b. Care shall be taken not to over excavate except where necessary to remove unstable material, irregularities, lumps, rock, and projections. Unnecessary over excavation shall be replaced at the Contractor’s sole expense and in accordance with Subsection 660.3.05.
c. Excavation carried below the established grade lines shown or established by the Utility Owner shall be backfilled according to Section 207 and Subsection 660.3.05. Use Class I or Class II Soils (defined in Section 810) and firmly compact the soil.

d. Where the established grade of a trench is in rock, undercut the bottom of the trench by at least 6 inches (150 mm) beneath the pipe or conduit and the greater of 24 inches (600 mm) wider than the pipe/conduit (12 inches or 300 mm each side) or 42 inches (1050 mm) wide, then backfill and compact according to Subsection 660.3.05.

e. Open cut excavation in pavement and pavement patching shall be according to GA Standard No. 1401. Remove the pavement according to Section 444, except no separate payment shall be made for sawed joints.

f. Dewatering: Remove all water from excavations and maintain the excavations free of water while construction therein is in progress. Provide dewatering equipment as necessary to conform to this requirement. Dewatering procedures must meet all state and local regulatory requirements.

3. Minimum Trench Depth

a. Excavate trenches to provide at least 48 inches (1.2 m) cover depth directly above the pipe to the finished pavement surface, sidewalk, grass, etc. unless indicated otherwise on the Plans or by GDOT Project Manager and Utility Owner. In order to avoid existing utilities, it may be necessary for the pipe to be laid shallower or deeper than the minimum cover specified. At such time the Contractor shall not be allowed extra compensation for additional excavation necessary for deeper installations.

b. Side slopes of the trenches shall be as nearly vertical as practicable. Trenches in excess of 5 feet (1.5 m) deep shall either have the trench sides laid back to conform to OSHA requirements for trench safety, if such area is available within the limits of excavation, or, alternatively, trenches deeper than 5 feet (1.5 m) shall be excavated via trench box or shored and braced.

4. Trench Width: Excavate trenches to uniform widths, wide enough to allow proper installation of pipe, fittings, and other materials, a minimum of 6 inches (150 mm) and a maximum of 12 inches (300 mm) each side of the pipe or conduit.

5. Trench Bell Holes: Excavate bell holes deeply and widely enough to make joints and to allow the pipe barrel to rest firmly on the trench bottom.

6. Trench bottom: Excavate and shape trench bottoms to provide uniform bearing and support of pipes and conduits. Shape subgrade to provide continuous support of bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits/pipes. Remove projecting stones, tree roots, debris, and sharp objects along trench subgrade. Abrupt changes in grade of the trench bottom shall be avoided. Unless otherwise indicated in the Plans or The Facility Owner’s Standard Specifications, trenches for force mains shall be graded to avoid high and low points that necessitate air release valves.

7. Excavations may be excavated and refilled either by hand or by machinery. Hand tool excavation shall be conducted where necessary to protect existing utilities and structures.

8. In the event that unsuitable material is encountered at or below the excavation depth specified or shown on the Plans, GDOT Project Manager shall be notified immediately before proceeding with any additional work. Such material shall be removed and replaced with suitable material in accordance with Section 205.

E. Connecting to Existing Mains

1. Connect to an existing main with the appropriate fittings according to the Plans or The Facility Owner’s Standard Specifications and GDOT Project Manager. When making connections under pressure, furnish and use a tapping sleeve and valve assembly or line stop fittings as indicated. Coordinate with Utility Owner 72 hours in advance for wastewater service interruptions and temporary shut-offs. Evening or weekend work may be required to complete direct connections and tie-ins. Connect to existing mains as follows:

a. Before opening new pipeline trenches, locate the various points of connection to be made into existing pipelines. If necessary, uncover pipelines for the Utility Owner and GDOT Project Manager to prescribe the
connections and fittings needed.
b. Connect to existing pipelines only to meet operating requirements. Cut existing lines only after obtaining the Utility Owner and GDOT Project Manager’s permission.
c. Provide temporary line stops, associated fittings, and bypass pumping as indicated on the Plans and as necessary when cutting and plugging existing sewer mains to prevent service interruptions. Line stop and associated fittings shall be suitable for working pressures of 250 psi.
d. Connections to existing asbestos cement pipe shall be performed as indicated on the Plans or in The Facility Owner’s Standard Specifications. Cutting, removing, handling, and disposing of asbestos cement pipe shall be in accordance with requirements established by EPA, OSHA, GDOT, NIOSH, and the State of Georgia Environmental Protection Division, and any other applicable laws and ordinances.

F. Laying Sewer Mains and Appurtenances

1. Preparing and Handling Pipes
 a. Thoroughly clean the pipe and fittings before laying them. Keep them clean until accepted.
 b. Use suitable tools and equipment. Do not damage the pipe, especially the lining inside the pipe.
 c. Cut pipe in a manner to avoid damage to pipe or lining, leaving a smooth end at right angles to pipe axis. Smooth and bevel edges of cut pipe for push-on, gasket type joints.
 d. Bedding shall be provided as specified by the Utility Owner or pipe manufacturer for the type of conditions encountered. Bedding typically consists of granular soil free of lumps, clods, cobbles, and frozen materials, and shall be graded to a firm-but-yielding surface without abrupt changes in bearing value. Unstable soils and rock ledges shall be undercut from the bedding zone and replaced with suitable material.
 e. Bed pipe on coarse granular material in flat bottom trench with entire pipe barrel bearing uniformly on coarse granular material, except for an approximately 18-inch (450 mm) gap at pipe balance point for sling removal. Hand excavate and backfill as required to provide uniform and continuous bearing and support for the pipe. Do not support pipe on hubs or end bells. Consolidate coarse granular material under and around pipe up to pipe centerline by tamping.
 f. Join pipe with bells facing direction in which laying operation is progressing. Lay pipe upgrade wherever line grade exceeds 10%.
 g. Carefully examine pipe for cracks and other defects and do not lay defective pipe. If pipe or castings appear to be cracked, broken, or defective after laying, remove and replace those sections.

2. Alignment and Gradient
 a. Ensure that pipe alignment and gradient are according to the lines and grades on the Plans. Pressure pipe alignment shall be either straight or deflected to closely follow true curves. Deflect pipe lines only where required, within allowable horizontal and vertical deflection angles according to the manufacturer.
 b. Sewers shall be laid at least 10 feet (3 m) horizontally from any existing or proposed water main. The distance shall be measured edge-to-edge. When local conditions prevent a horizontal separation of 10 feet (3 m), the sewer may, on a case-by-case basis, be laid closer to a water main provided the water main is in a separate trench or on an undisturbed earth shelf located on one side of the sewer at such an elevation that the bottom of the water main is at least 18 inches (450 mm) above the top of the sewer.
 c. Maintain a vertical separation of at least 18 inches (450 mm) between the crown of sanitary sewers and the invert of existing or proposed water mains with the sewer main located below the water main.
 d. Where a vertical separation of 18 inches (450 mm) cannot be provided, and the sewer main cannot be relocated to provide adequate clearance, the section of sewer main passing over or under water mains shall be constructed of materials and with joints that are equivalent to water main standards of construction and in accordance with Section 670, or the sewer line shall be encased in a watertight carrier pipe in accordance with Section 670, extending 10 feet (3 m) on both sides of the crossing measured perpendicular to the water main and shall be pressure tested to assure water-tightness to 150 psi prior to backfilling.

3. Special Requirements for Laying Sewer Mains
a. Excavate, clean, lay, joint, and backfill progressively and uniformly according to these requirements:
 1) Never leave pipe in the trench overnight without completely jointing and capping.
 2) Do not leave completed pipeline exposed in the trench. Backfill and compact the trench as soon as possible after laying, jointing, and testing are complete.
 3) At the close of work each day and when laying pipe, close the exposed end of the pipeline in the trench with an approved wood or metal head or barrier.
 4) If necessary to cover the end of an incomplete pipeline with backfill, close the end of the pipe with a satisfactory cap or plug.

G. Installing Sewer Mains by Open Cut
1. Use the following flexible joints for connections inside the roadway shoulders or curbs and gutters:
 a. Mechanical Joints
 1) When using mechanical joints, thoroughly wash bell sockets, spigots, gland, gasket, nuts, and bolts with soapy water before assembly. Keep these parts wet until the jointing operation is complete.
 2) Tighten nuts within the torque range recommended by the manufacturer. Check the tightening tolerance with a torque wrench.
 3) If effective sealing is not attained at the maximum recommended torque, disassemble, thoroughly clean, and then reassemble the joint.
 4) Do not overstress bolts to compensate for improper installation or defective parts.
 b. Push-On Type Joints
 1) Use push-on joints made according to the manufacturer’s recommendations.
 2) Install PVC pipe in accordance with AWWA C605.
 3) Install ductile iron pipe in accordance with AWWA C600.
2. Restraints for pipe joints and fittings shall be provided as specified and as shown on the Plans. Restraints shall be installed per manufacturer’s recommendations.
3. Buried ductile iron pipe and fittings shall be polyethylene encased as specified and as indicated on the Plans. Polyethylene encasement tubing shall be secured with polyethylene tape and installed in accordance with ANSI/AWWA C105/A21.5.
4. Unless otherwise specified by The Facility Owner’s Standard Specifications, provide pipe detection wire on all non-metallic pipe systems. Tape the tracer wire to the top center of the pipe at intervals which prevent wire displacement during backfilling operations. Stub tracer wire up 6 inches (150 mm) above finished grade at all valves. For splices, use direct bury kits. After backfilling is complete, test electrical continuity of each tracer wire segment and provide test results to Utility Owner and GDOT Project Manager.
5. Install continuous underground warning tape during backfilling of trench for underground water distribution piping. Install 12 inches (300 mm) below finished grade, or 6 inches (150 mm) below subgrade under pavements and walkways, and buried directly over piping.
6. Use pipe cutters when cutting pipe or special castings. Do not use a hammer, chisel, or a cutting torch.
7. Force mains that do not meet minimum depth of cover, vertical clearance requirements, or other installation requirements at special locations (e.g. creek crossings) shall include concrete encasement. Concrete encasement shall be installed per The Facility Owner’s Standard Specifications.
8. If HDPE pipe is to be installed where high groundwater table or water surrounding the pipe is expected, precautions shall be taken to provide neutral buoyancy to prevent floatation or a change in alignment.
9. Valves on Sewer Mains: Install and joint gate, plug, and check valves in accordance with AWWA C600. Include the valve box and valve marker where required.
10. Air release valves shall be installed at high elevation points on the force main and at locations indicated on the Plans. Air release valves shall be installed in accordance with manufacturer’s recommendations.
a. Unless specified otherwise in the Plans or The Facility Owner’s Standard Specifications, air release valves shall be installed in a shallow manhole or vault. Automatic air relief valves shall not be used in areas where flooding of the manhole or vault may occur.

b. An isolation valve shall be installed between the air release assembly and the connection to the main.

c. The Contractor shall furnish and install at no additional cost to GDOT or Utility Owner all necessary fittings for the installation of air release valves at high points.

11. Thrust Collars and Thrust Blocks: If required, furnish materials and install thrust collars or concrete blocking along force mains as indicated in Subsection 660.2.01. Form and pour concrete thrust collars or blocks in accordance with the Plans and The Facility Owner’s Standard Specifications. Blocking shall be poured against undisturbed earth and all forms shall be removed before backfilling.

12. Backfilling

a. Furnish equipment, labor, and when necessary, suitable material to conform with The Facility Owner’s Standard Specifications required for backfilling the pipe line trenches according to Section 207, and as follows:

1) When testing for leaks in open trenches, do not backfill until testing is complete and leaks are eliminated.

2) When retaining pavement adjacent to trenches, replace removed pavement with the same or better material when approved in accordance with the appropriate Section for the pavement type replaced.

3) Place backfill on subgrades free of mud, frost, snow, or ice.

4) Place and compact bedding course on trench bottoms and where indicated. Shape the bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits/pipes.

5) Backfill shall include Class I or Class II Soils as defined in Section 810 or suitable material that conforms with The Facility Owner’s Standard Specifications.

6) Backfill shall be placed in two stages: first, side fill to a height of 12 inches (300 mm) above the top of pipe; second, overfill to former surface grade. Side fill shall consist of granular material laid in 6-inch (150 mm) layers each consolidated by mechanical tamping and controlled addition of moisture, to a density of 95% as determined by the Standard Proctor test (AASHTO T-99 Method D) or GDT 67. Overfill shall be layered and consolidated to match the entrenched material in cohesion and compaction. The top 12 inches (300 mm) shall be compacted to 100% of specified density. Consolidation by saturation or ponding shall not be permitted.

7) Soil Moisture Control: Uniformly moisten and aerate subgrade and each subsequent fill or backfill soil layer before compaction to within 2% of optimum moisture content. Remove and replace, or scarify and air dry, otherwise satisfactory soil material that exceeds optimum moisture content by 2% and is too wet to compact to specified dry unit weight.

8) Initial backfill shall be carefully compacted under pipe haunches and evenly up on both sides and along the full length of piping or conduit to avoid damage or displacement of piping or conduit. Place and compact fill and backfill of satisfactory soil to final subgrade elevation. Backfill voids with satisfactory soil while removing shoring and bracing and/or trench boxes.

9) After backfilling, maintain temporary surface restoration per GA Standard No. 1401 until permanent repaving is complete. No separate payment shall be made for replaced pavement.

H. Installation of Manholes

1. Each manhole location within the trench shall be over excavated to receive a minimum of 8 inches (200 mm) of No. 57 stone to establish a firm foundation for the manhole. Where the excavation reveals an unsuitable foundation, whether rock or muck, the Contractor shall remove unsuitable material and install No. 57 stone in 6-inch (150 mm) lifts to a maximum of 2 feet (0.6 m) as a foundation for the structure.

2. All manholes shall be installed plumb.

3. Horizontal joint sealant protruding into the manhole shall be cut smooth against the interior wall. Interior joints shall not be grouted unless otherwise directed.
4. Exterior wrap shall be installed centered over joints between manhole sections. Exterior manhole wall shall be clean prior to installing wrap.
5. Backfill adjacent to manholes shall be mechanically compacted in 12-inch (300 mm) lifts symmetrically around the perimeter of the manhole up to the frame and cover, and in accordance with Subsection 660.3.05.
6. Manholes shall be set flush with finished pavement grades where located beneath roadways, sidewalks, or other paved surfaces.

7. All lifting holes or equipment mounting holes shall be filled in completely and made watertight per manufacturer’s recommendations.

I. Connections to Existing Manholes
1. Whenever new sewers are connected to existing manholes, pipe openings shall be core drilled with approved equipment to accommodate new pipe. Such connections to existing manholes shall be installed in accordance with manufacturer’s recommendations for neoprene boot, link seal or equal. All cuts shall be coated with an appropriate protective coating.
2. The bottom of the manhole shall be reworked and shaped to accommodate the new connections.

J. Laying Laterals and Appurtenances
1. Except as modified in this Section, construct and install sewer laterals according to the Plans and the requirements for laying sewer mains. Install service lines at locations shown on the Plans or where designated by the Utility Owner and GDOT Project Coordinators.
2. Trench depth and backfill cover may be adjusted at the discretion of the Utility Owner and GDOT Project Coordinators to provide at least 18 inches (450 mm) of cover.
3. Install wyes or tees in the locations shown on the Plans for connection of existing or future service lines. Install laterals with proper grade and alignment to the property line shown on the Plans.
4. New laterals shall extend from the sewer main to the edge of the right-of-way (no more than 5 feet (1.5 m) from the edge of the right-of-way line) where they shall be plugged using a stopper of appropriate size. Sewer laterals shall be tapped into sewer trunk lines using the appropriate tapping machine.
5. Laterals shall be bedded and backfilled in accordance with bedding requirements shown on the Plans and specified herein.
6. Lateral connections shall not be made by knocking a hole in the main or manhole, inserting the lateral pipe, and sealing with grout.
7. Unless otherwise indicated in the Plans or The Facility Owner’s Standard Specifications, sewer laterals shall be a minimum of 6 inches (150 mm) in diameter and shall extend from the main and terminate with a clean-out constructed at the edge of right-of-way.

K. Cutting and Capping Existing Sewer Mains
Disconnect by sawing or cutting and removing a segment of existing pipe where cutting and capping or plugging is shown on the Plans or directed by The Facility Owner’s or GDOT Project Coordinators. Provide a watertight pipe cap or plug and restraint mechanism to seal off existing mains indicated to remain in service. If sewer main is to be abandoned or removed and not specified to be grout filled, seal ends with a pipe cap or plug or with a masonry plug and minimum 6-inch (150 mm) cover of concrete on all sides around the end of the pipe.

1. The Contractor shall be responsible for uncovering and verifying the size and material of the existing main to be capped or plugged.
2. Abandoned manholes and sewer mains larger than 6 inches (150 mm) shall be removed or filled with flowable fill per Section 600 at the locations indicated on the Plans. Air release valves along abandoned pressure pipe shall be plugged prior to grouting. Prior to backfilling, the bottom of the manhole shall be broken up in such a manner that water will readily pass through and all pipes entering the manhole shall be plugged or grout filled. The top portion of the manhole structure shall be removed in order to establish a minimum of 3 feet cover from subgrade or finished grade.
when not under the pavement and filled with sand or suitable backfill.

3. Sewer mains shall be cleaned prior to placement of flowable fill. Use concrete or grout pumps capable of continuous delivery at planned placement rate with sufficient pressure to overcome friction and fill the sewer main.

L. Cured-In-Place Pipe (CIPP) Liner Installation

1. Work shall only be performed by personnel trained, experienced, and skilled in the CIPP process.

2. Bypass Pumping: Provide bypass pumping for the flow of sewage around the section or sections of pipe designated for renovation. Accomplish bypass pumping by plugging the line at an existing upstream manhole and pumping the flow into a downstream manhole. Pump sizing shall be adequate to handle the flow. Provide bypass pumping during pre-installation and post-installation video inspections and during the CIPP liner installation.

3. Pre-Installation: Inspect pipelines for breaks, obstacles, and service connections by close circuit television (CCTV) and produce permanent video record (DVD). Camera used for inspection shall be equipped with rotating head that is capable of 90 degree rotation for horizontal and 360 degree rotation about its centerline and has a minimum resolution of 400 vertical lines and 460 horizontal lines. Camera shall be operative in 100% humidity. Utilize power winches, TV cable, and power rewinds to move camera through sewer line at a speed less than 30 feet (10 m) per minute. Provide voice over description on the video with stationing of services and areas for point repair indicated on the video. Inspect interior of pipeline to determine existing conditions that may prevent proper installation of the CIPP pipeliner. Designate areas for point repair by evaluating any obstructions that can’t be removed by conventional sewer cleaning equipment such as a protruding service connection, dropped joint, or collapse. Confirm locations for all branch service connections. Transfer procession and property rights of the inspection video record to the Utility Owner.

4. Cleaning: Clear the line of all solids and roots. Remove all internal debris from the sewer line to prevent interference with the CIPP. Properly dispose of all debris removed from the sewer line.

5. Point Repair: Excavate and repair any protruding service connection, dropped joint, or collapsed pipe observed during the inspection process.

6. Customer sewer service shall be maintained throughout the duration of the project whenever possible. If maintaining customer sewer service is not possible, limit outage duration for sewer customers to a maximum of 8 hours. Each home or business being affected shall be contacted and informed of the work being conducted, when service will be unavailable, and the duration of the outage. Contact shall be made a minimum of 7 calendar days prior to service outage. Deliver a written notice to each affected home or business a minimum of one business day prior to beginning work informing them when service will be unavailable, the duration of the outage, and a local telephone number for customers to call and discuss any issues.

7. Install CIPP in accordance with ASTM F1216, Section 7, or ASTM F1743, Section 6 with the following modifications:
 a. Quantity of resin used for tube impregnation is sufficient to fill the volume of air voids in the tube with additional allowances for polymerization shrinkage and the loss of resin through cracks and irregularities in the original pipe wall.
 b. Thorough resin saturation is achieved throughout the length of the felt tube.
 c. Point of vacuum is not further than 25 feet from the point of initial resin introduction.
 d. Vacuum point is no further 75 feet form the leading edge of the resin after a vacuum in the tube is established.
 e. Leading edge of the resin slug is as near to perpendicular as possible.

8. Tube insertion: Position the wetout tube in the pipe line using either inversion or a pull-in method. If pulled into place, utilize power winching equipment suitable for intended purpose and ensure the tube is not damaged as a result of pull-in friction. The tube shall be pulled-in or inverted through an existing manhole or approved access point and shall extend fully to the next designated manhole or termination point.

9. Temperature Monitoring: Place temperature gauges inside the tube at the invert level of each end and monitor the temperature during the CIPP cure cycle.

10. Reopen service connections without excavation.
11. Following installation and reinstatement of service connections, perform post-installation inspection utilizing CCTV requirements for pre-installation.
12. Perform visual inspection of the CIPP pipeliner in accordance with ASTM F1743, Section 8.6.
13. Prepare CIPP pipeliner samples and test physical properties in accordance with ASTM F1216 or ASTM F1743, Section 8, using either method proposed. Flexural properties shall meet or exceed the values listed in Table 1 of the applicable ASTM. Provide for testing of flexural properties and reporting of test data for each line segment by an independent testing laboratory accredited by AASHTO Accreditation Program.
14. Obtain wall thickness samples for analysis from each line segment installed and at the end farthest from the cure source. Determine wall thickness of samples as described in paragraph 8.1.6 of ASTM F1743. The minimum wall thickness at any point shall not be less than 87.5% of the design thickness as specified in Subsection 660.2.01. Provide for testing of wall thickness samples and reporting of test data for each line segment by an independent testing laboratory accredited by AASHTO Accreditation Program.

M. Relocating, Adjusting, and Removing

1. Sewer Valves and Air Release Valves
 a. Relocate, adjust to grade, or remove valves and valve boxes according to the Plans or as designated by the GDOT Project Manager and Utility Owner.
 b. Protect items during removal and relocation. Contractor shall replace lost or damaged Items at no expense to GDOT.
 c. Disconnect each joint before removing items from the trench.
 d. Test for leakage, adjust, and retest until no leaks appear.
 e. Backfill as specified in Subsection 660.3.05.
 f. Consider valve boxes part of the valve assembly and remove them intact with the valve.
2. Existing Valve Boxes
 a. Lower, raise, or relocate existing valve boxes to the location and grade established on the Plans or by the GDOT Project Manager and Utility Owner according to Section 611.
3. Lift Stations
 a. Demolish and install new lift station (if required) as indicated on the Plans.
4. Manholes
 a. Frames and covers shall be removed and manhole shall be adjusted to grade. Adjustment shall be made by adding or removing brickwork, concrete, riser rings, or other materials in accordance with the Plans and The Facility Owner’s.
 b. Within roadways, manholes shall be brought to final grade prior to paving. A minimum area of 12 inches (300 mm) wide (from edge of manhole ring) and a minimum of 12 inches deep shall be excavated around the adjusted frame and cover prior to final paving. The excavated area shall be brought to the grade of the roadway base material with a minimum of 3,000 psi concrete in preparation of final paving.

5. Utility related items identified on the Plans to be salvaged are the property of the Utility Owner. Contractor shall coordinate with Utility Owner on delivery of salvaged materials. Should the Utility Owner choose to not accept these materials they shall be removed from the project site as soon as practical.

N. Aerial Crossings

1. When the aerial crossing is accomplished by attachment to a bridge or drainage structure, the crossing shall meet all requirements of the agencies that own or have jurisdiction over such structures.
2. Support must be provided for all joints in pipes utilized for aerial crossings. The supports must be installed to prevent frost heave, overturning, and settlement. Precautions against freezing, such as insulation and increased slope, must be provided.
3. Expansion joints shall be provided between above ground and below ground sewers. Where buried sewers change to aerial sewers, construction shall minimize frost heaving.
4. Aerial installations shall avoid or minimize stream blockage during normal high water events.

5. For pressure pipe, underground valves shall be provided at both ends of the aerial crossing so that the section can be isolated for testing or repair. The valves shall be restrained, easily accessible, and not subject to flooding. An air release/vacuum relief valve shall be installed at all high points along the aerial crossing.

6. Appropriate guards shall be installed at both ends of the aerial crossing to prevent public access to the pipe.

660.3.06 Quality Acceptance

A. Materials Certification

For certain products, assemblies and materials, in lieu of normal sampling and testing procedures by the Contractor, the GDOT, and Utility Owner may accept from the Contractor the manufacturer’s certification with respect to the product involved under the conditions set forth in the following paragraphs:

1. Material certifications shall be provided to GDOT, who shall distribute to the Utility Owner. Material certifications shall be approved by GDOT and the Utility Owner prior to construction. The certification shall state/specify that the named product conforms to these specifications and requirements of the Utility Owner and GDOT, and representative samples thereof have been sampled and tested as specified.

2. The certification shall either:
 a. Be accompanied by a certified copy of the test results, or on GDOT QPL list, or
 b. Certify such test results are on file with the manufacturer and will be furnished to the GDOT Project Manager and Utility Owner upon demand.

3. The certification shall state/specify the name and address of the manufacturer and the testing agency and the date of tests; and sets forth the means of identification which shall permit field determination of the product delivered to the project as being the product covered by the certification.

4. Submit certification with two copies of the covered product to the GDOT Project Manager, and Utility Owner.

5. GDOT or the Utility Owner will not be responsible for any costs of certification or for any costs of the sampling and testing of products in connection therewith.

6. GDOT and the Utility Owner reserve the right to require samples and test products for compliance with pertinent requirements irrespective of prior certification of the products by the manufacturer. Any materials that fail to meet specification requirements will be rejected.

7. In accordance with the BUY AMERICA requirements of the Federal regulations (23 U.S.C. 313 and 23 CFR 635.410) all manufacturing processes for steel and iron products or predominantly of steel or iron (at least 90% steel or iron content) furnished for permanent incorporation into the work on this project shall occur in the United States. The only exception to this requirement is the production of pig iron and the processing, pelletizing and reduction of iron ore, which may occur in another country. Other than these exceptions, all melting, rolling, extruding, machining, bending, grinding, drilling, coating, etc. must occur in the United States.

 a. Products of steel include, but are not limited to, such products as structural steel piles, reinforcing steel, structural plate, steel culverts, guardrail steel supports for signs, signals and luminaires. Products of iron include, but are not limited to, such products as cast iron frames and grates and ductile iron pipe. Coatings include, but are not limited to, the applications of epoxy, galvanizing and paint. The coating material is not limited to this clause, only the application process.

 b. Records to be provided by the Contractor for this certification shall include a signed mill test report and a signed certification by each supplier, distributor, fabricator, and manufacturer that has handled the steel or iron product affirming that every process, including the application of a coating, performed on the steel or iron product has been carried out in the United States of America, except as allowed by this Section. The lack of these certifications will be justification for rejection of the steel and/or iron product or nonpayment of the work.

 c. The requirements of said law and regulations do not prevent the use of miscellaneous steel or iron components, subcomponents and hardware necessary to encase, assemble and construct the above products, manufactured
products that are not predominantly steel or iron or a minimal use of foreign steel and iron materials if the cost of such materials used does not exceed one-tenth of one percent (0.1%) of the total contract price or $2,500.00, whichever is greater.

B. Hydrostatic Testing of Pressure Pipe

1. When the Utility Owner and GDOT Project Manager approve a section of pressure pipe for testing, the Contractor shall furnish the materials, equipment, and labor to conduct the pressure and leakage tests. Use a test pump, pressure gauge, and a means of measuring the water necessary to maintain the required pressure during the prescribed testing time. All pressure and leakage testing shall be done in the presence of the Utility Owner and GDOT Project Manager as a condition precedent to the approval and acceptance of the system. All pipes shall have been thoroughly flushed prior to testing. Simultaneous or separate pressure and leakage tests may be performed.

2. All water for testing and flushing shall be water provided by the Contractor, at no cost to the Utility Owner or GDOT, from an approved source. Flow velocity during line filling shall not exceed 2 feet (0.6 m) per second (fps).

3. Testing Requirements
 a. Force main testing shall be done immediately after installation and backfilling has been completed.
 b. Force mains shall be tested in accordance with the latest revision of AWWA C600 for ductile iron and C605 for PVC under an average hydrostatic pressure of the greater of 1.5 times the maximum working pressure or 150 psi as measured at the lowest point in the system for a minimum of 2 hours. Pressure shall be maintained until all sections under testing have been checked for evidence of leakage.
 c. While the system is being filled with water, air shall be carefully and completely exhausted. If permanent air vents are not located at all high points, the Contractor shall install corporation stops or fittings and valves at such points at no additional expense to the Utility so the air can be expelled as the pipe system is slowly filled.
 d. Makeup water shall be added, as required, to maintain the pressure within 5 psi of the test pressure. The quantity used shall be measured by pumping from a calibrated container. The maximum amount of makeup water allowed shall be determined by the following formula:

 \[L = \frac{SD \cdot P^{0.5}}{148,000} \]

 in which,

 \(L \) = Allowable Leakage in gallons per hour
 \(S \) = Length of pipe being tested in feet
 \(D \) = Nominal pipe diameter in inches
 \(P \) = Average test pressure during the test in psi gauge

 e. Visible leaks shall be corrected regardless of total leakage shown by test. All pipe fittings and other materials found to be defective under test shall be removed and replaced. Lines which fail to meet test requirements shall be repaired and retested as necessary until test requirements are met. No additional compensation shall be made for repairs or retesting.

C. Alignment Testing

1. Straight alignment of gravity sewers shall be checked by either using a laser beam or lamping. Each segment between manholes shall show at least 90% of the full pipe circle visible when looking from manhole to manhole.

D. CCTV Inspection

1. All new gravity sewers shall be inspected via closed-circuit televising (CCTV) in accordance with The Facility Owner’s Standard Specifications. The Contractor shall thoroughly clean the entire sewer system by jetting or applicable methods prior to the TV inspection. If conditions indicate repairs are necessary, re-televising may be
required. The initial inspection shall be scheduled with the Utility Owner and GDOT Project Manager when the Contractor advises that all sewer lines are ready for testing.

2. All TV inspections shall be performed by persons and/or firms qualified in such work.

3. The Contractor shall provide the TV inspection deliverables according to the format indicated in The Facility Owner’s Standard Specifications.

E. Manhole Vacuum Testing

1. A vacuum test shall be performed on each manhole to assure water-tightness in accordance with ASTM C1244. The manholes shall be tested separately from sewer lines.

2. If the manhole fails the initial test, necessary repairs shall be made at the Contractor’s expense and the manhole retested until a satisfactory test is obtained.

F. Deflection Testing

Utility Owner may require deflection tests utilizing a mandrel to be performed on flexible gravity sewer pipes. Deflection tests shall be conducted after the final backfill has been in place to permit stabilization of the soil-pipe system and follow the requirements of The Facility Owner’s Standard Specifications. No mechanical pulling devices shall be used. All pipes not passing this mandrel shall be re-laid or replaced by the Contractor at no additional cost to GDOT or Utility Owner.

G. Leakage Testing

1. The Contractor shall conduct tests to determine the water-tightness of gravity sewers when completed. The Utility Owner shall observe the tests with the Contractor furnishing all required labor, equipment, and materials.

2. Sewers shall be tested in sections with each section extending between two adjacent manholes or from the end of the sewer to the nearest manhole. The Contractor shall utilize an infiltration test, an exfiltration test, or a low pressure air test at the direction of the Utility Owner and in accordance with The Facility Owner’s Standard Specifications.

 a. Infiltration: Each section shall be covered with no less than two feet (0.6 m) of water above the top of the pipe at the highest point. The infiltration will be measured by means of a weir located in the downstream manhole. The pressure head of 2 feet (0.6 m) shall be maintained for a period of not less than 24 hours before the weir measurements are made.

 b. Exfiltration: The sewer at the upstream side of the lower manhole and the upstream side of upper manhole in each section shall be closed with a watertight bulkhead and the sewer filled with water until the water elevation in the upstream manhole is not less than two feet (0.6 m) above the top of the sewer pipe or two feet (0.6 m) above ground water elevation in the trench, whichever is higher. The exfiltration will be determined by measuring the amount of water required to maintain the above stated water elevation for a period of one hour from the start of the test. The entire length of section to be tested shall be filled and maintained full of water for a period of approximately 24 hours prior to the start of the test.

 c. The amount of exfiltration or infiltration shall not exceed 50 gallons per inch of pipe diameter per 24 hours per mile of sewer in each and every section tested in accordance with the above.

 d. In the event the allowable leakage rates are not met, the Contractor shall determine the location(s) where excess water is entering or leaving the sewer. The sewer and/or the manholes shall be repaired and retested until the leakage in the sewer is within the allowable limits.

3. Air test: Low pressure air testing shall be completed to detect leaks in sewers where hydrostatic testing is not practical. The Contractor shall perform the low pressure air test as specified in ASTM C924 for concrete and Uni-Bell UNI-B-6-98 for plastic pipe.

660.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.
660.4 Measurement

Incidentals including excavation, rock removal, backfilling, flushing, testing, temporary water connections, pavement removal, pavement replacement, and other incidentals required for the installation of sanitary sewer items are not measured for separate payment and shall be included in the applicable Pay Items below. Gravity sewer mains, manholes, force mains, and laterals, and associated items of work in this Specification, complete, in place, and accepted, are measured for payment as follows:

A. Ductile Iron Sewer Main
 Ductile iron sewer mains shall be measured in linear feet (meters) for each size and thickness class installed. Measurement shall be horizontally above the centerline of the pipe and shall include the length of valves and fittings.

B. PVC Sewer Force Main
 PVC sewer mains shall be measured in linear feet (meters) for each size and thickness installed. Measurement shall be horizontally above the centerline of the pipe and shall include the length of valves and fittings.

C. PVC Sewer Gravity Main
 PVC sewer mains shall be measured in linear feet (meters) for each size and thickness installed. Measurement shall be horizontally above the centerline of the pipe and shall include the length of valves and fittings.

D. Fusible PVC Sewer Main
 Fusible PVC sewer mains shall be measured in linear feet (meters) for each size and type installed. Measurement shall be horizontally above the centerline of the pipe and shall include the length of valves and fittings.

E. HDPE Sewer Main
 HDPE sewer mains shall be measured in linear feet (meters) for each size and type installed. Measurement shall be horizontally above the centerline of the pipe and shall include the length of valves and fittings.

F. Concrete Sewer Main
 Concrete sewer mains shall be measured in linear feet (meters) for each size and type installed. Measurement shall be horizontally above the centerline of the pipe and shall include the length of valves and fittings.

G. Ductile Iron Fittings
 Ductile iron fittings shall be included in the overall pipe measurements acceptably installed. This Item includes, but is not limited to, wyes, tees, bends, crosses, sleeves, plugs and caps, and reducers.

H. Restrained Joints
 Joint restraints used with the installation of PVC or ductile iron pipe shall be included in the overall pipe measurements acceptably installed on the number of each size restraint device installed.

I. Manholes
 Manholes shall be measured on an individual basis on the depth and type of manhole acceptably installed in accordance to Section 668.

J. Drop Manholes
 Drop Manholes shall be measured on an individual basis on the depth and type of manhole acceptably installed in accordance to Section 668.
J. **Connection to Existing Manholes**
 Connections to existing manholes shall be included in the Contract price for sewer line connection acceptably installed.

K. **Gate Valves**
 Gate valves shall be measured on an individual basis for each size valve and box assembly acceptably installed.

L. **Check Valves**
 Check valves shall be measured on an individual basis on the number of each size valve and box assembly acceptably installed.

M. **Plug Valves**
 Plug valves shall be measured on an individual basis on the number of each size valve and box assembly acceptably installed.

N. **Tapping Sleeve and Valve Assembly**
 Tapping sleeve and valve assemblies shall be measured on an individual basis on the number of each size tapping sleeve and valve assembly acceptably installed.

O. **Sewer Laterals**
 Sewer laterals shall be measured on an individual basis on the size of lateral acceptably installed.

P. **Cleanouts**
 Sewer laterals shall be measured on an individual basis on the number of each cleanout acceptably installed.

Q. **Air Release Valve Assemblies**
 Air release valve assemblies shall be measured on an individual basis on the number of each size and type of air release valve assembly acceptably installed.

R. **Steel Casing**
 Steel casing pipe of the wall thickness and diameter specified shall be measured by the linear foot for each size and thickness of steel casing pipe installed. Measurement shall be horizontally above the centerline of the casing.

S. **Relocation of Existing Air Release Valves**
 Relocation of existing air release valves shall be measured on an individual basis on the number of each acceptably relocated.

T. **Adjustment of Existing Valve Boxes to Grade**
 Adjustment of existing valve boxes adjusted to grade in their original locations shall be measured on an individual basis on the number of each valve box acceptably adjusted in accordance with section 611.

U. **Removal of Air Release Valves**
 Removal of existing air release valves shall be measured on an individual basis on the number of each removed.

V. **Removal of Manholes**
 Removal of existing manholes shall be measured on an individual basis on the number of each manhole removed in accordance to Section 610.

W. **Adjustment of Manholes**
Adjustment of existing manholes adjusted to grade in their original locations shall be measured on an individual basis on the number of each manhole acceptably adjusted in accordance to Section 611.

X. **Reconstruct Manhole**
Reconstruction of existing manholes to grade in their original locations shall be measured on an individual basis on the number of each acceptably reconstructed manhole in accordance to Section 611.

Y. **Adjustment of Cleanout**
Adjustment of cleanouts to grade shall be measured on an individual basis on the number of each cleanout acceptably adjusted in accordance to Section 611.

Z. **Concrete Thrust Blocks**
Concrete thrust blocking installed shall be measured as indicated in Section 500 per cubic yard of concrete acceptably installed. When Concrete Thrust Blocks is not shown as a pay item, include the cost of the work in the bid price for the sewer pipe.

AA. **Concrete Thrust Collars**
Thrust collars shall be measured on an individual basis on the number of each size thrust collar acceptably installed. When Concrete Thrust Collars is not shown as a pay item, include the cost of the work in the bid price for the sewer pipe.

BB. **Cut and Plug Sewer Main**
Cutting and plugging of sewer mains shall be measured on an individual basis per each instance of cutting and plugging existing mains as shown on the Plans.

CC. **Removal of Sewer Mains**
Removal of sewer mains shall be measured per linear foot for each size pipe removed in accordance to Section 610. Measurement shall be horizontally above the centerline of the pipe removed and shall include the length of valves and fittings.

DD. **Line Stop**
Line stops shall be measured on an individual basis on the number of each size line stop actually installed.

EE. **Flowable Fill**
Flowable fill shall be measured as indicted in Section 600 per cubic yard of flowable fill acceptably installed. When flowable fill is not shown as a pay item, include the cost of the work in the bid price for the appropriate item.

FF. **Cured-In-Place-Pipe (CIPP) Liners**
CIPP liners shall be measured per linear foot for each size CIPP installed. Measurement shall be horizontally above the centerline of the host pipe from center of manhole to center of manhole.

GG. **Insertion Valve**
Insertion valves shall be measured on an individual basis on the number of each size valve acceptably installed.

HH. **Closed Circuit Television (CCTV) Inspection**
CCTV inspection shall be measured per linear foot of CCTV inspection price to be included in the Contract price for sewer pipe acceptably performed.

II. **Three-Dimensional (3D) Survey**
Three-dimensional survey shall be measured as one lump sum for a complete and accepted survey price to be included in the Contract price for sewer pipe acceptably performed.
660.4.01 Limits
General Provisions 101 through 150.

660.5 Payment
The Contract Unit Price for each Item, complete and accepted, shall include all costs incidental to the construction of the item according to the Plans and as specified in this Section. The unit prices bid shall include due allowance for the salvage value of all materials removed from existing or temporary lines and not installed in the completed work. All such surplus items shall become the property of the Contractor unless such surplus items are specified to be salvaged. Payment for any item listed below is full compensation for the Item or Items complete in place.

A. Ductile Iron Sewer Mains
Ductile iron sewer mains shall be paid for at the unit price per linear foot for each diameter pipe installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of pipe, joints and jointing materials, anchoring, warning tape, polyethylene encasement, protection of existing utilities, connections to existing mains, flushing, backfilling, backfill materials, disposal of unsuitable backfill material, clean backfill, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to place the pipe into service.

B. PVC Force Main
PVC sewer mains shall be paid for at the unit price per linear foot for each diameter and thickness pipe installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of pipe, joints and jointing materials, anchoring, tracer wire, warning tape, protection of existing utilities, connections to existing mains, flushing, backfilling, backfill materials, disposal of unsuitable backfill material, clean backfill, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to place the pipe into service.

C. PVC Gravity Main
PVC sewer mains shall be paid for at the unit price per linear foot for each diameter and thickness pipe installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of pipe, joints and jointing materials, tracer wire, warning tape, protection of existing utilities, connections to existing mains, flushing, backfilling, backfill materials, disposal of unsuitable backfill material, clean backfill, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to place the pipe into service.

D. Fusible PVC Sewer Main
Fusible PVC sewer mains shall be paid for at the unit price per linear foot for each diameter pipe installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, entry/exit pits, installation of pipe, joints and jointing materials, tracer wire, warning tape, mechanical joint adapters, protection of existing utilities, connections to existing sewage mains, fusion process materials and equipment, directional drilling materials and equipment, tracking system, assembling, welding, supporting, stringing, pulling, pigging, cleaning, flushing, backfilling, backfill materials, disposal of unsuitable backfill material, clean backfill, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, and restoration, and all incidentals necessary to place the pipe into service except where such items are shown to be paid for under a separate Pay Item.

E. HDPE Sewer Main
HDPE sewer mains shall be paid for at the unit price per linear foot for each diameter pipe installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring,
entry/exit pits, installation of pipe, tracer wire, warning tape, mechanical joint adapters, protection of existing utilities, connections to existing mains, fusion process materials and equipment, directional drilling materials and equipment, tracking system, assembling, welding, supporting, stringing, pulling, pigging, cleaning, flushing, backfilling, disposal of unsuitable backfill material, clean backfill, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, and restoration, and all incidentals necessary to place the pipe into service except where such items are shown to be paid for under a separate Pay Item.

F. Concrete Sewer Main

Concrete sewer mains shall be paid for at the unit price per linear foot for each diameter pipe installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of pipe, anchoring, tracer wire, warning tape, protection of existing utilities, connections to existing mains, flushing, backfilling, backfill materials, disposal of unsuitable backfill material, clean backfill, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to place the pipe into service.

G. Ductile Iron Fittings

Ductile iron fittings will not be paid for separately but shall be included in the overall pipe measurements acceptably installed each fitting as denoted in the manufacturers’ catalogues and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of fittings, joints and jointing materials, anchoring, warning tape, polyethylene encasement, protection of existing utilities, flushing, backfilling, backfill materials, disposal of unsuitable backfill material, clean fill, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration, all other related and necessary materials, work, and equipment required to install a complete and operable pipeline fitting. This Item includes, but is not limited to, wyes, tees, bends, crosses, sleeves, plugs and caps, couplings, and reducers.

H. Restrained Joints

Restrained joints not be paid for separately but shall be included in the overall pipe measurements acceptably installed each fitting as denoted and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting, shoring, installation of the restraint device, polyethylene encasement, protection of existing utilities, backfilling, backfill material, disposal of unsuitable backfill materials, clean fill, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to install the restrained joint.

I. Gate Valves

Gate valves shall be paid for at the unit price per each size gate valve and box assembly installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of the gate valves including valve box, concrete pad or collar, valve identification disc, valve marker, valve tag, polyethylene encasement, protection of existing utilities, backfilling, backfill material, disposal of unsuitable backfill materials, clean fill, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to install the gate valve and place it in service.

J. Plug Valves

Plug valves shall be paid for at the unit price per each size plug valve and box assembly installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of the butterfly valves (including valve box), concrete pad or collar, valve identification disc, valve marker, valve tag, polyethylene encasement, protection of existing utilities, backfilling, backfill material, disposal of unsuitable backfill materials, clean fill, tamping, testing, densities, utility crossings,
dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to install the plug valve and place it in service.

K. Check Valves
Check valves shall be paid for at the unit price per each size check valve and box assembly installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of the check valves, concrete vault or manhole, concrete pad or collar, valve identification disc, valve marker, valve tag, polyethylene encasement, protection of existing utilities, backfill material, disposal of unsuitable backfill materials, clean fill, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration and all work and materials necessary to install the check valve and place it in service.

L. Tapping Sleeve and Valve Assembly
Tapping sleeve and valve assemblies shall be paid for at the unit price per each size tapping sleeve and valve assembly installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of tapping sleeves and valve assemblies including valve box, concrete pad or collar, valve marker, polyethylene encasement, protection of existing utilities, tapping the force main, backfilling, backfill material, disposal of unsuitable backfill materials, clean fill, tamping, testing, densities utility crossings, dewatering, trench stabilization, clean-up, restoration, and all work and necessary hardware to install the tapping sleeve and valve assembly and place it in service.

M. Manholes
Sanitary sewer manholes shall be paid for at the unit price in accordance to Section 668 , according to the depth and type of each manhole installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of manholes including ring and covers, inverts, coatings, protection of existing utilities, backfill material, disposal of unsuitable backfill materials, clean fill, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to install the manhole and place into service.

N. Drop Manholes
Sanitary sewer drop manholes shall be paid for at the unit price per each manhole installed in accordance to Section 668 and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of manholes including ring and covers, inverts, coatings, outside drop piping and fittings, concrete encasement, protection of existing utilities, backfill material, disposal of unsuitable backfill materials, clean fill, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to install the manhole and place into service.

O. Connections to Existing Manholes
Connections to existing manholes shall be paid for in the Contract Price for sewer pipe and shall cover the cost for all material, transportation, labor, equipment, excavation, sheeting and shoring, installation of manhole connection, rework of inverts, grout, coatings, protection of existing utilities, backfill material, disposal of unsuitable backfill materials, clean fill, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, bypass pumping (as required), restoration, and all work and materials necessary to acceptably install the manhole connection.

P. Sewer Laterals
Sewer laterals shall be paid for at the unit price per size of each size installed to the property line and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, piping, installation of sewer lateral including connection to existing pipe, cleanout, cleanout marker, fittings including wyes, bends, pipe, cap with screw plug, tracer wire, casting, concrete collar or pad, valve box and cover, bypass pumping (as required), protection of existing utilities, backfilling, backfill materials, disposal of unsuitable backfill material, clean fill, tamping, testing, densities, utility crossings, dewatering, trench
stabilization, clean-up, restoration, and all work and materials necessary to place the sewer lateral into service.

Q. Cleanouts
Sewer cleanouts shall be paid for at the unit price per each cleanout installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, piping, installation of cleanout including connection to existing pipe, fittings including wyes, bends, pipe, cap with screw plug, tracer wire, casting, concrete collar or pad, valve box and cover, bypass pumping (as required), protection of existing utilities, backfilling, backfill materials, disposal of unsuitable backfill material, clean fill, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to place the cleanout into service.

R. Air Release Valve Assembly
Air release valves shall be paid for at the unit price per each size and type of air release valve installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of the air release assembly, tapping saddle, isolation valve, reducers, piping, restraints, fittings, tracer wire, concrete manhole or vault, protection of existing utilities, backfilling, backfill materials, disposal of unsuitable backfill material, clean fill, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to place the air release assembly into service.

S. Steel Casing
Steel casing pipe shall be paid for at the unit price per linear foot according to the diameter and thickness of the steel casing installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, protection of existing utilities, steel casing pipe, skid, steel straps, coatings, casing spacers, end seals, boring and jacking pits, backfilling, backfill materials, disposal of unsuitable backfill material, clean fill, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to install the steel casing except where such items are shown to be paid for under a separate Item. The carrier pipe shall be paid for as a separate Pay Item.

T. Relocation of Existing Air Release Valves
Relocation of air release valves shall be paid for at the unit price per each air release valve assembly relocated and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheet and shoring, removal of existing air release valve assembly, installation at location indicated in Plans, piping, restraints, tracer wire, fittings, adjustment to final grade, polyethylene encasement, protection of existing utilities, backfilling, backfill material, disposal of unsuitable backfill materials, clean fill, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration, and all work necessary to locate, remove, and relocate the air release valve except where such items are shown to be paid for under a separate Pay Item.

U. Adjustment of Existing Valve Boxes to Grade
Adjustment of existing valve boxes shall be paid for which shall be paid for in accordance with Section 611, at the unit price per each valve box adjusted to final grade and shall cover the cost of all materials, transportation, labor, equipment, excavation, sheeting and shoring, valve case and lid, trench adapter and operating nut extensions/reductions, tracer wire and splices, tracer wire riser and threaded plug, concrete pad, valve identification disc, backfilling, backfill material, disposal of unsuitable backfill materials, clean fill, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to adjust the valve box.

V. Adjustment of Existing Manhole
Manhole tops to be raised or lowered 2 feet (0.6 m) or less are considered adjustment of existing manholes, which shall be paid for in accordance with Section 611, at the unit price per each manhole adjusted to final grade and shall cover the cost of all materials, including new ring and covers for sanitary manholes,
transportation, labor, equipment, plugs, riser sections, brick and mortar, adjustment rings, excavation, sheeting and shoring, backfilling, backfill material, disposal of unsuitable backfill materials, clean fill, tamping, testing, densities, dewatering, trench stabilization, clean-up, bypass pumping (as required), restoration, and all work and materials necessary to install the new ring and cover and adjust to final grade.

W. Reconstruct Existing Manhole

Manhole tops to be raised between 2 feet (0.6 m) and 6 feet (1.5 m), or tops to be lowered more than 2 feet (0.6 m) are considered the reconstruction of an existing manhole, which shall be paid for in accordance with Section 611, at the unit price per each manhole adjusted to final grade and shall cover the cost of all materials, including new ring and covers for sanitary manholes, transportation, labor, equipment, plugs, riser sections, brick and mortar, excavation, sheeting and shoring, backfilling, backfill material, disposal of unsuitable backfill materials, clean fill, tamping, testing, densities, dewatering, trench stabilization, clean-up, bypass pumping (as required), restoration, and all work and materials necessary to reconstruct the manhole. Tapping a new pipeline into an existing manhole is not considered reconstruction.

X. Adjustment of Cleanout

Adjustment of cleanouts shall be paid for at the unit price per each cleanout adjusted to finished grade and shall cover the cost of all materials, including transportation, labor, equipment, excavation, sheeting and shoring, backfilling, backfill material, disposal of unsuitable backfill materials, clean fill, tamping, testing, densities, dewatering, trench stabilization, clean-up, bypass pumping (as required), restoration, and all work and materials necessary to adjust the cleanout to final grade.

Y. Removal of Manhole

Removal of manholes shall be paid for which shall be paid for in accordance with Section 610, at the unit price per each manhole removed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheet and shoring, protection of existing utilities, backfilling, backfill material, disposal of unsuitable backfill materials, clean fill, tamping, testing, densities, dewatering, trench stabilization, clean-up, bypass pumping (as required), restoration, and all work necessary to remove and dispose of manholes including ring and covers.

Z. Removal of Air Release Valve

Removal of air release valves shall be paid for which shall be paid for in accordance with Section 610, at the unit price per each air release valve removed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, removal of air release valve assemblies, piping, manholes, concrete vaults and fabricated enclosures, backfilling, backfill materials, disposal of unsuitable backfill materials, clean fill, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration, storage and delivery of air release valves identified to be salvaged, and all work necessary to remove the air release valve.

AA. Concrete Thrust Blocks

Concrete thrust blocks shall be paid for at the unit price per cubic yard of concrete complete in place as indicated in Section 500 and shall cover the cost of all materials, transportation, labor, equipment, excavation, sheeting and shoring, concrete, forming, reinforcement, protection of existing utilities, backfilling, backfill material, disposal of unsuitable backfill materials, clean fill, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to install a complete thrust block. Concrete Thrust Blocks is not shown as a pay item; include the cost of the work in the bid price for the sewer pipe.

BB. Concrete Thrust Collars

Concrete thrust collars shall be paid for at the unit price per each size of thrust collar and shall cover the cost of all materials, transportation, labor, equipment, excavation, sheeting and shoring, reinforced concrete
thrust collars, retainer glands, reinforcement, protection of existing utilities, backfilling, backfill material, disposal of unsuitable backfill materials, clean fill, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to install a complete thrust collar. Concrete Thrust Collars is not shown as a pay item; include the cost of the work in the bid price for the sewer pipe.

CC. Removal of Sewer Mains
Removal of sewer mains shall be paid for which shall be paid for in accordance with Section 610, at the unit price per linear feet (meters) of the size of sewer main to be removed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, protection of existing utilities, backfilling, backfill material, disposal of unsuitable backfill materials, clean fill, tamping, testing, densities, dewatering, trench stabilization, clean-up, bypass pumping (as required), restoration, and all work and materials necessary to locate, remove and dispose of the pipe and associated appurtenances. Unless indicated for removal as a separate Pay Item, appurtenances to be removed shall include but not be limited to fittings, isolation valves, air release valves, valve boxes, steel casings, casing spacers, service laterals, thrust blocks, and concrete. All such surplus items shall become the property of the Contractor unless specified to be salvaged by the Utility Owner.

DD. Cut and Plug Existing Sewer Main
Cutting and plugging of existing sewer mains shall be paid for at the unit price per each installation and shall cover all materials, transportation, labor, equipment, excavation, sheeting and shoring, protection of existing utilities, backfilling, backfill material, disposal of unsuitable backfill materials, clean fill, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to cut and plug existing sewer mains except where such items are shown to be paid for under a separate Pay Item.

EE. Line Stops
Line stops shall be paid for at the unit price per each size line stop installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of the line stop assemblies, valves, valve boxes, fittings, restraints, protection of existing utilities, backfilling, backfill material, disposal of unsuitable backfill materials, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to install the gate valve and place it in service.

FF. Flowable Fill
Flowable fill shall be paid for at the unit price per cubic yard of flowable fill installed as indicated in Section 600 and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, flushing, plugging air release valves and service connections, installation of flowable fill, protection of existing utilities, backfilling, backfill material, disposal of unsuitable backfill materials, clean fill, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to complete the installation. When flowable fill is not shown as a pay item for the sewer items, include the cost of the work in the bid price for the appropriate item.

GG. Cured-In-Place-Pipe (CIPP) Liner
CIPP liners shall be paid for at the unit price per linear foot and diameter of liner acceptably installed and shall cover the cost for all materials, transportation, labor, equipment, bypass pumping, cleaning, root removal, flushing, coordination with and protection of existing utilities, distributing project notices, removal of protruding service connections, supplying and installing liner, reinstatement of service connections, inspection, testing, clean-up, restoration, and all work and materials necessary to complete the
liner installation including incidentals and associated labor for which payment is not provided under a separate Pay Item. Point repairs shall be paid for under the unit price per linear foot of the diameter and material of pipe being replaced.

HH. Insertion Valve

Insertion valves shall be paid for at the unit price per each size valve inserted and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of the valve, valve boxes, fittings, restraints, concrete pad or collar, valve identification disc, valve marker, polyethylene encasement, protection of existing utilities, backfilling, backfill material, disposal of unsuitable backfill materials, clean fill, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to install the insertion valve and place it in service.

II. Closed Circuit Television (CCTV) Inspection

CCTV inspection shall be included in the Contract price for sewer pipe inspection acceptably performed and shall cover the costs for all materials, transportation, labor, equipment, excavation, sheeting, shoring, bypass pumping, protection of existing utilities, CCTV inspection, CDs / DVDs, inspection reports, clean-up, restoration, and all work and materials necessary to perform the CCTV inspection.

JJ. Three-Dimensional (3D) Survey

Three-dimensional survey shall be price to be included in the Contract price for sewer pipe, and shall cover the costs for all non-destructive methods of locating installed utilities and associated electronic deliverables per Utility Owner specifications.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 660</th>
<th>Description</th>
<th>Unit Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 660</td>
<td>Sewer Force Main, _____ in (mm)</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 660</td>
<td>Sewer Gravity Main, _____ in (mm)</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 660</td>
<td>Sewer Main, Ductile Iron, _____ in (mm)</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 660</td>
<td>Sewer Main, Fusible PVC, _____ in (mm)</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 660</td>
<td>Sewer Main, HDPE, _____ in (mm)</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 660</td>
<td>Sewer Main, Concrete, _____ in (mm)</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 660</td>
<td>Cured-in-Place Pipe (CIPP) Liner, _____ in (mm)</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 660</td>
<td>Sewer Main, _____ in (mm)</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 660</td>
<td>Steel Casing, _____ in (mm)</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 660</td>
<td>Cleanouts, _____ in (mm)</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 660</td>
<td>Tapping Sleeve and Valve Assembly, _____ in (mm)</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 660</td>
<td>Relocation of Existing Air Release Valve Assembly, _____ in (mm)</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 660</td>
<td>Removal of Air Release Valve, _____ in (mm)</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 660</td>
<td>Cut and Plug Sewer Main, _____ in (mm)</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 660</td>
<td>Concrete Thrust Collar, _____ in (mm)</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 660</td>
<td>Gate Valve, _____ in (mm)</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 660</td>
<td>Check Valve, _____ in (mm)</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 660</td>
<td>Plug Valve, _____ in (mm)</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 660</td>
<td>Description</td>
<td>in (mm)</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Item No. 660</td>
<td>Insertion Valve,</td>
<td></td>
</tr>
<tr>
<td>Item No. 660</td>
<td>Air Release Valve Assembly,</td>
<td></td>
</tr>
<tr>
<td>Item No. 660</td>
<td>Sewer Lateral,</td>
<td></td>
</tr>
<tr>
<td>Item No. 660</td>
<td>Line Stop,</td>
<td></td>
</tr>
</tbody>
</table>

660.5.01 Adjustments

General Provisions 101 through 150.
Table of Contents

<table>
<thead>
<tr>
<th>SC-1</th>
<th>PRECONSTRUCTION SURVEY</th>
<th>SC-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC-2</td>
<td>SAFETY AND HEALTH</td>
<td>SC-1</td>
</tr>
<tr>
<td>SC-3</td>
<td>LAYOUT OF THE WORK AND SURVEYS</td>
<td>SC-2</td>
</tr>
<tr>
<td>SC-4</td>
<td>DETECTION OF MOVEMENT</td>
<td>SC-2</td>
</tr>
<tr>
<td>SC-5</td>
<td>EXISTING UTILITIES</td>
<td>SC-2</td>
</tr>
<tr>
<td>SC-6</td>
<td>WORK IN FLOOD PLAIN AREAS</td>
<td>SC-3</td>
</tr>
<tr>
<td>SC-7</td>
<td>RIGHT TO OPERATE</td>
<td>SC-3</td>
</tr>
<tr>
<td>SC-8</td>
<td>CONCRETE POUR CARD</td>
<td>SC-4</td>
</tr>
<tr>
<td>SC-9</td>
<td>TIE-INS OR MODIFICATIONS TO EXISTING SYSTEMS</td>
<td>SC-4</td>
</tr>
</tbody>
</table>
SPECIAL CONDITIONS

SC-1 PRECONSTRUCTION SURVEY

Contractor is expressly advised that the protection of buildings, structures, bridges, and related work adjacent and in the vicinity of its operations, wherever they may be, is solely its responsibility. Conditional inspection of buildings, bridges or other structures in the immediate vicinity of any blasting operations shall be performed by and be the responsibility of the Contractor. The inspection corridor shall extend within a 500-foot radius of any proposed blasting operations. The Contractor shall retain an independent consultant, specializing in preconstruction surveys, to conduct the required inspections.

The Contractor shall have the independent consultant, before the Contractor starts blasting operations, make an examination of the interior and exterior of the adjacent structures, buildings, facilities, etc., and record by notes, measurements, photographs, etc., conditions which might be aggravated by blasting or other operations. Repairs or replacement of all conditions disturbed by the construction shall be made to the satisfaction of the owners or agents of adjacent buildings, structures, facilities, etc., and to the satisfaction of the Engineer. This does not preclude conforming to the requirements of the insurance underwriters. Two copies of surveys, photographs, videos, reports, etc., shall be given to the Engineer.

Prior to the beginning of any excavations the Contractor shall advise the Engineer of all buildings or structures on which it intends to perform work or which performance of the project work will affect. The preconstruction survey will be performed by a firm specializing in performing such surveys. The qualifications and experience of the proposed consultant shall be submitted to the Engineer for approval prior to assignment of the Work.

The Contractor’s attention is directed to Section 01320 of the Technical Specifications.

SC-2 SAFETY AND HEALTH

The Contractor shall comply with all applicable health and safety standards and provisions required by the City of Atlanta, Fulton County, State of Georgia, and the Federal Government and its regulatory agencies. The Contractor shall maintain an accurate record of all cases of death, occupational diseases, and injury requiring medical attention or causing loss of time from work arising out of and in the course of employment on work under the Contract.

This project involves work in and around operating combined and sanitary sewer systems. In these areas, the potential exists for toxic and/or explosive gases. The Contractor shall exercise caution when entering any confined space. The atmosphere shall be tested for oxygen levels and potential explosive conditions before entry. Contractor alone shall be responsible for the safety, efficiency, and adequacy of his plant, appliances, and methods, and for any damage, which may result from their failure or their improper construction, maintenance, or operation.
Emergency telephone numbers (fire, medical and police) shall be posted at the Contractor’s telephone. The location of the Contractor’s telephone shall be known to all.

Accidents shall be reported immediately to the Engineer.

All accidents shall be documented and a full detailed report submitted to the Engineer after each accident.

SC-3 LAYOUT OF THE WORK AND SURVEYS

The Engineer will establish an initial base line and bench mark. The Contractor shall employ, at his own expense, a Surveyor registered in the State of Georgia who shall stake out the various structures and other parts of the work, establish levels, and erect permanent batter boards. From time to time, the above-mentioned surveyor shall verify by instrument all reference marks, and the Contractor shall be responsible for the accuracy of all line and levels and of the work as built in accordance therewith.

The Contractor shall exercise proper care and caution to verify the grades and figures given him before proceeding with the work, and shall be responsible for any errors, damage, or defective work caused by his failure to exercise such care and caution. He shall promptly notify the Engineer of any errors or discrepancies he may discover in order that the proper corrections may be made.

Engineer may check line and grade at such times as he determines such checks are necessary to verify conformance of the Contractor's work. Such a check shall not be considered as approval of the Contractor's work and shall not relieve the Contractor of responsibility for accurate construction of the entire work. The Contractor shall furnish the services of a person to help the Engineer in checking lines and grades. All stakes or marks required to establish the line and grades required for the completion of the Work shall be the responsibility of the Contractor.

SC-4 DETECTION OF MOVEMENT

In order to detect any movement of buildings or structures that may be affected by his work, Contractor shall, prior to excavation, establish a system of vertical and horizontal control points on or about such buildings or structures, tied to bench marks and indices sufficiently remote to not be moved by his operations. A plan of this system shall be submitted to the Engineer for review. Readings shall be taken of these points and permanently recorded prior to the start of excavation. The Owner will not assume any responsibility for alleged damages to any building or structure arising from the work performed under this Contract.

SC-5 EXISTING UTILITIES

SC-5.1 Verification of the Location of the Existing Utilities

Representations of existing utilities, facilities, and structures in the Contract Documents are based upon the best available information. The Owner and the Designer will not be responsible for the completeness or accuracy thereof nor for any deductions, interpretations, or conclusions drawn.
therefrom. The Contractor shall verify to his own satisfaction by test pit or other means, the actual location of existing utilities prior to construction in their vicinity.

Should the Contractor in the course of his operations encounter any underground utilities the presence of which was not previously known, or a different type than shown, he shall immediately notify the Engineer and take all necessary precautions to protect the utility and maintain continuance of service until said utilities can be adjusted by the appropriate owners.

Contractor will notify all public utility corporations, jurisdictional agencies, or other owners to make all necessary adjustments to public utility fixtures and appurtenances within or adjacent to the limits of construction. Delays and additional cost resulting from a failure of the Contractor to notify the utility or to provide adequate notice to the utility shall be at no additional cost to the Owner and in such case, no extension of time will be granted for delays caused by utility adjustments.

Damage caused to utilities either directly or indirectly by the Contractor shall be repaired and the facilities restored to their original condition to the satisfaction of the Engineer and the utility owner, at no additional cost to the Owner.

SC-5.2 Work in Vicinity of Existing Utilities

At least three (3) working days prior to starting work in the vicinity of utility structures and appurtenances, Contractor shall notify Engineer and appropriate utility companies and jurisdictional agencies. Contractor shall support and protect all utility structures and appurtenances in accordance with the requirements of the Contract Documents and the utility companies, and shall take any other steps necessary to protect the structures from disturbance or damage.

SC-5.3 Access to Utilities Facilities

The Contractor shall at all times permit free and clear access to the various affected facilities by personnel of the utility owners or operators who are working within the limits of work for the purpose of inspection, maintenance, or providing additional service requirements, and the construction of new facilities. When personnel of the utility owners or operators are working within the limits of work to be performed by Contractor, the Contractor will not be relieved of his responsibility for the maintenance and protection of such facilities.

SC-6 WORK IN FLOOD PLAIN AREAS

The Contractor shall comply with all regulations in the Fulton County Zoning Resolution, Article IV, Paragraph 4.24 Flood Plain Management.

SC-7 RIGHT TO OPERATE

As soon as any portion of the Work is completed, accepted by the Engineer and is ready for use, the Owner shall have the right to operate such portion upon written notice to the Contractor by the Owner. The Owner shall also issue a certificate of completion for that portion of the work. Guarantee period on
that portion of work will begin upon issuance of certificate of completion for that portion.

Testing of equipment and appurtenance and training of Owner’s personnel as specified shall not constitute operation.

The execution of the bonds shall constitute the consent of the surety.

The Contractor shall provide an endorsement to his insurance permitting occupancy of the structures and use of equipment during the remaining period of construction.

SC-8 CONCRETE POUR CARD

An approved concrete pour card must be obtained by the Contractor prior to the placement of concrete. The card shall be as provided to the Contractor by the Engineer. The pour card shall be completed by the Contractor and approved by the Engineer before concrete is placed.

SC-9 TIE-INS OR MODIFICATIONS TO EXISTING SYSTEMS

Anytime the Contractor ties into or modifies an existing system, a detailed work plan shall be required. Submittal of this work plan must be a minimum of 30 days in advance of commencement of the subject work. This work plan shall include a detailed description of the work, a step-by-step plan of the modification or tie-in, a schedule, a detailed list of materials and equipment required, demonstrated communications capacity, and a listing of any gates or valves, which must be operated. Working drawings shall be submitted for any permanent or temporary structural modifications. A temporary safety plan covering the period of the work, and a listing of contingency plans and supplies, including but not limited to spill prevention planning and spill containment kits, shall be required.

A coordination meeting with the Owner, the Contractor, the Engineer and the Designer must be held at least seven (7) days prior to the commencement of the modification or tie-in. The day before the commencement of the modification or tie-in, a final coordination shall be held giving final detailed work assignments to all parties involved.

The Owner and the Engineer have the right to require, at no additional cost to the Owner, stand-by equipment on any item(s) deemed critical enough to delay the work. The Contractor shall have available stand-by personnel to supplement the committed forces should problems arise. The Contractor is responsible for meeting all OSHA standards including entrance and exit safety, confined space entry, fall protection, scaffolding, rigging, etc.

++ END OF SPECIAL CONDITIONS +
DEPARTMENT OF TRANSPORTATION
STATE OF GEORGIA

SPECIAL PROVISION
COUNTY: COUNTY: FULTON
PI NO: 0012586

ponce de leon avenue complete street retrofit and beltline connection

section 670—water distribution system

delete section 670 and substitute the following:

670.1 general description

this work consists of furnishing materials, labor, tools, equipment, and other items necessary for installing, removing, abandoning, relocating, and adjusting water distribution systems according to the plans and specifications.

670.1.01 definitions

a. general provisions 101 through 150

b. whenever the terms “city” or “dwm” are used in this special provision and its related documents, it shall be understood to mean city of atlanta, department of watershed management, its subsidiaries, successors and/or assigns, hereafter referred to as utility owner.

c. the term “project manager” shall mean the authorized individual having the authority to give instructions pertaining to the work and to approve or reject the work. the “project manager” shall not however be authorized to revoke, alter, enlarge, relax, or release any requirements of the contract, plans, and specifications, nor shall they act as an agent for the contractor. all contract items pertaining to the utility owner shall be coordinated with the project manager and the utility owner.

d. whenever the term “georgia department of transportation” or “department” or “gdot” is used in this special provision, it shall be understood to mean fulton county.

670.1.02 related references

a. standard specifications

section 104—scope of work
section 107—legal regulations and responsibility to the public
section 108—prosecution and progress
section 205—roadway excavation
section 207—excavation and backfill for minor structures
section 210—grading complete
section 400—hot mix asphaltic concrete construction
section 444—sawed joints in existing pavements
section 500—concrete structures
section 600—controlled low strength flowable fill
section 611—relaying, reconstructing or adjusting to grade of miscellaneous roadway structures
Section 670 – Water Distribution System

Section 615—Jacking or Boring Pipe
Section 810—Roadway Materials

B. Related Documents

1. General Provisions 101 through 150.
2. All products supplied and all work performed shall be in accordance with DWM’s standard specifications, included as an appendix to this section, applicable standards from American Society for Testing and Material (ASTM), American Water Works Association (AWWA), American National Standards Institute (ANSI), GDOT Utility Accommodation Policy and Standards, and the Georgia Environmental Protection Division (EPD) Minimum Standards for Public Water Systems. Latest revisions of all standards shall apply.

670.1.03 Submittals

A. General Provisions 101 through 150.
B. Refer to the DWM’s standard specifications, current published edition, for water utility submittal requirements. Copies of all submittals and documentation shall be submitted to GDOT, who shall distribute to the Utility Owner.

C. Shop Drawings / Product Data

1. Submit four (4) copies of the following submittals to the GDOT Project Manager:
 a. Product data, including size, dimension, capacity, pressure rating, accessories, and special features, installation instructions, and operating characteristics for all proposed materials to show compliance with the requirements of this Special Provision.
 b. Test reports specified in the Quality Acceptance section of this Special Provision.
 c. Pipe manufacturer certification of compliance with specifications.
 d. Operation and maintenance literature, warranties, and other specified information.

D. Construction Record Documentation

1. The Contractor shall record on one set of utility drawings changes and deviations from the Contract Drawings in sizes, lines or grade. Record also the exact final horizontal and vertical locations of underground utilities and appurtenances, referenced to permanent surface improvements. Drawings shall utilize State Plane Coordinates and shall be legibly marked to record actual construction and submitted to GDOT no later than 30 days after installation and prior to Final Acceptance of the Project. The Utility Owner shall determine if the utility record drawings are complete prior to Final Acceptance of the project.
2. Record Drawings shall also be submitted as specified in DWM’s Specification Section 01055.

670.1.04 Quality Assurance

A. The Contractor shall comply with applicable codes, ordinances, rules, regulations and laws of local, municipal, state or federal authorities having jurisdiction over the Project.
B. Furnish manufactured items, pipe, fittings, valves, service components, and appurtenances from manufacturers having regularly produced such items as specified herein which have proven satisfactory in actual service, over at least a 2-year period, or as approved by the Utility Owner and GDOT.
C. Regardless of tolerances permitted by industry standards specified herein, the Utility Owner or the GDOT Project Manager may reject pipe or appurtenances at the manufacturing plant or project site which have cracks, chips, blisters, rough interior or exterior surface, evidence of structural weakness, joint defects, or other imperfections that might in the opinion of the Project Manager contribute to reduced functional capability, accelerated deterioration or reduced structural strength.
D. The Utility Owner and the Utility Owner’s consultant shall have the right to visit and inspect the work at any time. The Utility Owner may also have an Inspector assigned to the project authorized to inspect portions or all of the utility work done and the preparation, fabrication, or manufacture of the materials to be used. The Utility Owner shall be able to advise GDOT Project Manager of any observed discrepancies or potential problems. The cost of these inspections shall be the responsibility of the Utility Owner.
E. GDOT shall notify the Utility Owner before authorizing any changes or deviations which might affect the Utility Owner’s facilities. Contractor shall notify GDOT and Utility Owner a minimum of 24 hours prior to beginning work on utilities.

F. The Utility Owner shall be notified by GDOT Project Manager when all utility work is complete and ready for final inspection. The Utility Owner shall be invited to attend the final inspection and may provide a corrections list to GDOT Project Manager prior to the final inspection.

G. The Contractor shall verify the actual location and depth of all utilities prior to construction. All utilities and structures shall be protected during construction. Any damaged facilities shall be repaired or replaced at the Contractor’s expense.

670.2 Materials
All materials provided shall be in conformance with the requirements and standards set forth in the DWM’s standard specifications, current published edition. All pipeline and appurtenance materials in contact with potable water shall be National Sanitation Foundation (NSF) 61 Certified and part of GDOT QPL list. Pipes and appurtenances shall comply with Section 1417(a)(1) of the Safe Water Drinking Act as amended in 2011 which prohibits the use of any pipe, any pipe or plumbing fitting or fixture, and solder, or any flux, after June 1986, in the installation or repair of (i) any public water system; or (ii) any plumbing in a residential or non-residential facility providing water for human consumption, that is not lead free as defined in Section 1417(d).

670.2.01 Water Piping systems and Appurtenances

A. Ductile Iron Pipe and Fittings
1. Ductile iron pipe shall meet the latest edition of ANSI/AWWA C150/A21.50 and C151/A21.51 for the class and joint specified with a nominal laying length of 18 (5.5 m) to 20 feet (6 m). Joints for buried ductile iron pipe shall be mechanical or push-on joints. Unless specified otherwise in DWM’s Specification Section 02665, ductile iron pipe diameters 12 inch (300 mm) or less shall be minimum Pressure Class 350, while pipe diameters greater than 12 inch (300 mm) shall be minimum Pressure Class 250.

2. Ductile iron pipe for the interior of structures and above ground installations shall be flanged. Flanges shall be ductile iron and shall be threaded-on flanges conforming to ANSI/AWWA C115/A21.15 or cast-on flanges conforming to ANSI/AWWA C110/A21.10. The minimum class thickness for ductile iron flanged pipe to be threaded is Class 53.

3. Interior surfaces of ductile iron pipe and fittings shall be cement mortar lined in accordance with AWWA C104.

4. Ductile iron shall have an exterior coating as specified in AWWA C151 for ductile iron pipe and AWWA C153/C110 for ductile iron fittings.

5. Buried ductile iron pipe and fittings shall be polyethylene encased at locations indicated on the Plans or as conditions warrant. Polyethylene encasement tubing shall be in accordance with ANSI/AWWA C105/A21.5 and ASTM A674 and shall have a minimum thickness of 8 mils. Polyethylene encasement tubing shall be blue in color to designate potable water.

6. Fittings: Ductile iron fittings shall be epoxy coated and meet the requirements of ANSI/AWWA C153/A21.53 or ANSI/AWWA C110 A21.10 with a minimum pressure rating of 250 psi. Ends shall be restrained mechanical joint. All ductile iron fittings shall bear the NSF approval seal for potable water pipe.

7. Mechanical Joint Fittings: Mechanical joints consisting of bell, socket, gland, gasket, bolts, and nuts shall conform to ANSI/AWWA C111/A21.11.

8. Push-On Joints: Push-on joints shall be designed in accordance with ANSI/AWWA C111/A21.11. Joint lubrication shall be as furnished by the manufacturer.

9. Rubber gasket joints for push-on or mechanical joints shall conform to the requirements of ANSI/AWWA C111/A21.11.
10. Restrained Joints: Restrained joints shall be provided as shown on the Plans and where required for thrust restraint. The restraining joints for mechanical joint fittings shall conform to the requirements of ANSI/AWWA C111/A21.11 with assembly in conformance with AWWA C600 and manufacturer’s recommendations. Restrained joints for pipe shall be mechanical joints with ductile iron retainer or push-on type joints and shall have a minimum rated working pressure of 250 psi.

11. Mechanical joint retainer glands may be used to restrain mechanical joint pipe and fittings to the plain end of ductile iron pipe and fittings. Restrainer glands shall be manufactured of ductile iron per ASTM A536.

12. Corrosion-resistant bolts used with ductile iron joints shall be high-strength, low-alloy steel as specified in ANSI/AWWA C111/A21.11.

13. Welded Outlets: Welded outlets in ductile iron pipe shall be provided where specified and indicated on the Plans. Outlets shall be fabricated by welding sections of ductile iron pipe manufactured in accordance with ANSI/AWWA C151/A21.51. Welded outlet pipe shall be fabricated only by the pipe manufacturer. The minimum ductile iron pipe thickness for fabrication of welded outlet pipe shall be Thickness Class 53 for 4-inch to 54-inch (100 to 1350 mm) diameter pipe. All joints on welded-on branch outlets shall be provided in accordance with the latest revision of ANSI/AWWA C111/A21.11 and/or ANSI/AWWA C115/A21.15, as applicable. After the outlets are welded together and prior to finishing, the assembly shall be subjected to a 15-psi air test for leakage. The maximum size and laying length of the welded-on branch outlet shall be recommended by the pipe manufacturer and acceptable to the Utility Owner for the field conditions and connecting pipe or valve.

B. Polyvinyl Chloride (PVC) Pipe

1. PVC pipe diameters 4-inch through 12-inch (100 mm to 300 mm) shall meet ANSI/AWWA C900 requirements, and shall be a minimum pipe dimension ratio (DR) 18, Pressure Class 235 psi. PVC pipe diameters 14-inch (350 mm) and greater shall meet ANSI/AWWA C905 requirements, shall be DR 18 minimum, Pressure Class 235 psi. Pipe shall have a bell with an integral wall section with a factory installed, solid cross section elastomeric ring in accordance with ASTM F477.

2. All PVC pipe shall be formulated for sunlight exposure, be blue in color to designate potable water, and bear the NSF approval seal.

3. Joints for 4-inch (100 mm) and larger PVC pipe shall meet the requirements of AWWA C900/C905, latest edition. The rubber gaskets used for the joints shall consist of flexible elastomeric material conforming to ASTM F477.

4. PVC pipe shall have the same outside diameter (OD) as ductile iron pipe and be compatible for use with ductile iron fittings.

5. Fittings for PVC pipe 4 inches (100 mm) and larger shall be ductile iron mechanical joint and comply with the requirements set forth in the specifications for Ductile Iron Pipe and Fittings.

6. Restrained Joints: Restrained joints shall be provided as shown on the Plans and where required for thrust restraint. Restrained joints shall comply with the requirements set forth in the specifications for Ductile Iron Pipe and Fittings.

7. Unless specified otherwise in the Plans, 2-inch (50 mm) and 3-inch (75 mm) diameter PVC pipe shall conform to the requirements of ASTM D2241 Class 1120 or 1220 (SDR 21) with a working pressure rating of 200 psi with integral bell gasketed joints. Pipe is to be manufactured to IPS standard pipe equivalent outside diameters.

8. Schedule 80 PVC pipes smaller than 4-inch (100 mm) nominal diameter shall be in accordance with ASTM D1785. Schedule 80 pipe shall have threaded joints. Solvent cemented joints are not allowed for buried pipes. Threaded type fittings for Schedule 80 PVC pipe shall be in conformance with ASTM D2464. All threaded joints shall be watertight.

9. Flanges for Schedule 80 PVC pipe shall be rated for a 150-psi working pressure with ANSI B16.1 dimensions and bolting pattern. Flanges shall be connected to PVC piping with threaded joints in accordance with ASTM D2467 or ASTM 2464, respectively.
C. Fusible PVC Pipe
1. Fusible PVC pipe sizes 4-inch (100 mm) to 36-inch (900 mm) shall conform to AWWA C900/C905 as applicable and follow the dimension ratios (DR) set forth in the requirements listed for PVC pipe.
2. Fusible PVC pipe shall be blue in color to designate potable water.
3. Fusible PVC pipe shall be extruded with plain ends. The ends shall be square to the pipe and free of any bevel or chamfer. There shall be no bell or gasket of any kind incorporated into the pipe.
4. Fusible PVC pipe shall be manufactured in a standard 40-foot nominal length-, or custom lengths as specified.
5. Joints shall be made by butt fusing sections of pipe with manufacturer-approved equipment.
6. Fittings shall be ductile iron mechanical joint and comply with the requirements set forth in the specifications for Ductile Iron Pipe and Fittings.

D. High Density Polyethylene (HDPE) Pipe
1. HDPE pipe sizes 4-inch (100 mm) and larger shall be a PE 4710/3408 high density, extra-high molecular weight polyethylene manufactured from first-quality high density polyethylene resin containing no additives, fillers, or extenders. The HDPE pipe shall have an ASTM D3350 cell classification of PE 445574C, shall meet the requirements of AWWA C906, and shall be sized based upon the ductile iron pipe size (DIPS), outside diameter (OD) sizing system. The HDPE pipe shall be a minimum DR 11, pressure class 160 psi, and shall bear the NSF approval seal.
2. HDPE pipe shall be blue or marked with a permanent blue stripe to designate potable water.
3. Joints shall be made by butt fusing sections of pipe with manufacturer-approved equipment.
4. Fittings shall be ductile iron mechanical joint meeting the requirements of ANSI/AWWA C110/A21.10 and ANSI/AWWA C111/A21.11.
5. The pipe shall have fusion welded restrainer ring, follower gland, and a 12-inch (300 mm) stainless steel insert for the mechanical joint connection.
6. HDPE water mains shall be properly sized utilizing the inside diameter of the nominal pipe diameter. If during construction HDPE is substituted for other pipe materials, the Contractor shall verify that the inside diameter of the HDPE is the same or larger than the inside diameter of the pipe originally specified.

E. Steel Casing Pipe
1. All materials, design, fabrication, handling, and testing of steel casing pipe shall conform to the requirements of ASTM A139, AWWA C200 and AWWA Manual M11 "Steel Pipe – A Guide for Design and Installation."
2. Steel casing pipe shall be new, smooth-wall, carbon steel pipe conforming to ASTM Specification A139, Grade B with a minimum yield strength of 35,000 psi. Steel casings shall be used with the size, minimum thickness, length, and coating specified on the Plans or DWM’s Specification Section 02224.
3. Additional anti-corrosion measures, as specified by the manufacturer or indicated on the Plans, shall be provided at connectors, couplings, rollers, restraints, etc.
4. Unless specified otherwise in the Plans or DWM’s Specification Section 02224, casing pipe end seals shall consist of ¼-inch (6 mm) thick flexible synthetic rubber boot with adjustable stainless steel banding straps. The annular space of the casing shall not be filled with concrete or grout.
5. Casing spacers shall consist of a stainless-steel shell, PVC ribbed liner, and non-conducting separators to keep the carrier pipe from touching the casing pipe. Spacers shall be provided at a maximum of 10-foot intervals and within 2 feet (0.6 m) of the end of the casing pipe.

F. Pipe Detection Wire
1. Unless otherwise specified by the Plans or DWM’s Specification Section 02665, open cut installations of non-metallic pipe shall include minimum #12-gauge tracing wire. Pipe installed by directional drill shall include two (2) insulated 8-gauge tracer wire. Wire shall be solid copper insulated with HDPE installed
along pipe, wrapped around service line stub outs and stubbed into valve boxes for locating purposes. Wire shall be properly spliced to provide continuous conductivity.

G. Warning Tape

1. Water mains shall be installed with polyethylene film warning tape manufactured for marking and identifying underground water utilities. Tape shall be a minimum of 2 inches (50 mm) wide and 4 mils thick, blue in color, with continuously printed letters reading “CAUTION BURIED WATER LINE BELOW”.

H. Gate Valves

1. Gate valves 3 inches (80 mm) and larger shall be of the resilient seat type meeting the requirements of AWWA C509 or C515. Valves shall be iron body, bronze trimmed, with non-rising stems, and shall be fusion-bonded epoxy coated per ANSI/AWWA C550. Valves shall have a minimum design working pressure of 200 psi.

2. Valves shall be manually operated by nut and open counter-clockwise unless specified otherwise in the Plans or DWM’s Specification Section 15100.

3. The resilient seating arrangement shall provide zero leakage at the design working pressure when installed with line flow in either direction. All ferrous surfaces inside and outside shall have a fusion bonded epoxy coating. All valves shall be provided with O-ring seals. The design and machining of valves shall be such as to permit replacing the O-ring seals in the valves while in service without leakage.

4. All gate valves, when fully opened, shall have an unobstructed waterway diameter equal to or larger than the full nominal diameter of the valve.

5. In general, valves shall be designed for vertical installation. Valves installed in the horizontal position shall be provided with bevel gears, extended gear case, rollers, tracks, and scrapers.

6. Exposed or above-ground gate valves shall be outside screw and yoke (OS&Y) flanged joint type with an operating hand wheel. The face-to-face dimensions and drilling shall conform to ANSI B16.10 for Class 125 flanged joint end gate valves.

7. Valves shall include mechanical joints, bolts, glands, gaskets, and all other materials necessary to join to existing work.

8. Provide brass identification tag imprinted with “WATER”, valve size, valve type, and direction and number of turns to open. Provide a ¼-inch (8 mm) hole in the brass tag and attach the tag to the end of the locate wire (twist wire around tag). Tag shall be 2-inch (50 mm) diameter and ⅛-inch (6 mm) thick brass with a ¼-inch (8 mm) hole.

I. Insertion Valve

1. Insertion type valves shall be resilient wedge gate valves designed to be installed into an existing pressurized potable water main without interruption of flow through the pipe and no reduction of line pressure.

 a. Valve shall be fusion-bonded epoxy coated in compliance with AWWA C550.

 b. The construction of the resilient wedge shall comply with AWWA C509 requirements.

 c. The resilient wedge shall be fully encapsulated with EPDM rubber and shall seat on the valve body and not the pipe. The resilient wedge shall be totally independent of the carrier pipe.

 d. Valve shall be restrained to the pipe.

 e. Valves shall be suitable for operating pressures up to 250 psi.

J. Butterfly Valves

1. Butterfly valves shall be of the tight-closing, rubber seated type, with rubber seat positively locking in place sealing against flow from either direction. Valves shall be hand operated with cast or ductile iron bodies. Valves shall conform to the requirements of AWWA C504, Class 150B, and shall be fusion-bonded epoxy coated per ANSI/AWWA C550.
2. Valves shall have a 2-inch (50 mm) square operating nut and shall be installed with extension stems to extend the operating nut in accordance with the project details. Valves shall open by turning the operating nut counter clockwise unless specified otherwise in the Plans or DWM’s Specification Section 15100.

3. Valve shafts shall be of 304 or 316 stainless steel.

4. Buried butterfly valve end connections shall be installed using restrained mechanical joints.

5. Flanged valves shall be fully faced and drilled in accordance with ANSI Standard B16.1, Class 125.

6. Provide brass identification tag imprinted with “WATER”, valve size, valve type, and direction and number of turns to open. Provide a ¼-inch (8 mm) hole in the brass tag and attach the tag to the end of the locate wire (twist wire around tag). Tag shall be 2-inch (50 mm) diameter and ⅛-inch (6 mm) thick brass with a ¼-inch (8 mm) hole.

K. Ball Valves

1. Ball valves 2-inch (50 mm) and smaller shall be designed for a working pressure of not less than 175 psi. End connection shall be threaded. The body and all parts shall be made in accordance with AWWA C800 and ASTM B62 latest revision.

L. Tapping Sleeves and Valve Assembly

1. Tapping sleeves and valves sizes 4-inches (100 mm) and larger shall be stainless steel with wraparound gasket style, or ductile iron of the split-sleeve, mechanical joint type. Tapping sleeves shall be rated for a minimum 150 psi working pressure in accordance with ANSI/AWWA C110/A21.10.

2. When tapping an existing asbestos cement pipe, a stainless-steel tapping sleeve which contains a full gasketed surface within the sleeve body shall be used due to variances in the manufactured outside diameter of the asbestos cement pipe.

3. Tapping sleeve shall have an outlet flange per ANSI B16.1, Class 125 standard.

4. The Contractor shall determine the outside diameter of the existing main before ordering the sleeve.

5. Tapping valves shall be mechanical joint outlet, non-rising stem, resilient seated gate valves meeting the applicable requirements of ANSI/AWWA C509/C515 and C550 with a minimum design working pressure of 200 psi.

6. Tapping valves shall be specifically designed for pressure tapping with sufficient seat opening to allow full diameter taps to be made.

7. Tapping valves shall be manufactured with an integral tapping flange having a raised lip design.

8. Tapping valves shall be furnished with a combination flange and mechanical joint for connecting the branch to the main.

M. Valve Boxes

1. All valves shall be equipped with valve boxes. The valve boxes shall be heavy, roadway type boxes. The valve box cover shall be marked “WATER VALVE” or “WATER”.

2. Valve box materials shall conform to the requirements and standards set forth in the DWM’s Specification Section 15100, current published edition.

3. The valve boxes shall be adjustable up or down from the nominal required cover over the pipe. Extensions shall be provided as necessary. A precast concrete ring shall be placed around the valve box opening when outside of paved areas.

4. Valves shall be furnished with extension stems as necessary to bring the operating nut to within 24 inches (600 mm) minimum of the top of the valve box.

N. Service Connection Assemblies

1. Water service connections and plumbing should conform to the standards set forth in the DWM’s Specification Section 02668 and relevant local and/or state plumbing codes or to the Standard Plumbing Code as applicable within the jurisdiction in which the system is located.
2. Service connection assemblies shall be provided for all new service line connections to existing meters. Existing service lines indicated for replacement shall be replaced with new materials from the water main to the existing or new water meter.

3. Service connection assemblies shall include:
 a. Service saddle
 b. Corporation stop
 c. Service line
 d. Fittings
 e. Curb stop
 f. Water meter box
 g. Water meter (separate Pay Item for new service connections)
 h. Backflow preventer (separate Pay Item for new service connections)

O. Service Saddles
 1. Service saddles shall have ductile iron or bronze body with stainless steel epoxy coated double tie straps and nuts with pressure rating not less than that of the pipe to which it is to be connected.
 2. Saddles shall have a rubber gasket cemented to the body, with compatible threading between the saddle and corporation stop. Saddles shall conform to ANSI/AWWA C800 standards.
 3. The service saddle shall provide full support around the circumference of the pipe, providing a bearing area of sufficient width so that pipe will not distort when the saddle is tightened.

P. Water Service Pipe
 1. Polyethylene (PE) pipe for water service lines shall conform to AWWA C901 and ASTM D-2737 and shall be 200 psi pipe, SDR 9 for copper tube size (CTS). Polyethylene extrusion compound from which the polyethylene pipe is extruded shall comply with applicable requirements for PE 3408 ultra-high molecular weight polyethylene plastic material as specified in AWWA C901.
 2. Marking on the PE service pipe shall include the nominal pipe or tubing size, the type of plastic material, the standard thermoplastic pipe dimension ratio or the pressure rating in psi, the ASTM designation with which the pipe complies, and manufacturer's name or trade mark and code. It shall also include the NSF seal of approval for use with potable water.
 3. Copper tubing for water service lines shall be seamless and shall conform to ANSI/AWWA C800 and ASTM B88, Type K soft, suitable for potable water use with a working pressure of 150 psi.
 4. Water service line fittings shall be as indicated in DWM’s Specification Section 02668.

Q. Corporation and Curb Stops
 1. Corporation stops, curb stops, and other appurtenances for plastic or copper service lines shall meet the requirements of ASTM B62 and AWWA C800.
 2. Service line taps shall be equipped with corporation stops. Corporation stops in sizes 1-inch (25 mm) through 2-inch (50 mm) shall be manufactured from cast bronze with machined fitting surfaces. The corporation shall be pressure rated to no less than 150 psi.
 3. Curb stops shall be ball valve type and made of bronze. Pipe connections shall be suitable for the type of service pipe used and shall be pressure rated for no less than 150 psi.

R. Water Meters
 1. Water meters shall conform to the requirements and standards set forth in the DWM’s Specification Section 02668.

S. Meter Boxes
 1. Water meter boxes shall be high density, reinforced plastic body with one piece cast iron lid with lettering “WATER METER” on cover unless otherwise indicated on the Plans. Recessed hole shall be included in lid, if required by Utility Owner for electronic reading capability. Provide box of size and height appropriate to installation of meter and accessories required. Meter and curb stop shall be fully encased by the meter box.
Section 670 – Water Distribution System

T. Concrete Vault
1. Concrete vaults shall conform to the requirements and standards set forth in the DWM’s Specification Section 02668 and standard details.

U. Air Release Valve Assembly
1. Air release, air/vacuum valves, and combination air valves shall be suitable for use with potable water systems and manufactured in compliance with ANSI/AWWA C512.
2. Air release valves shall have a small venting orifice to vent the accumulation of air and other gases in the line or system under pressure.
3. Air/vacuum valves shall have a large venting orifice to permit the release of air as the line is filling or relieve the vacuum as the line is draining or is under negative pressure.
4. Combination air valves shall have operating features of both the air/vacuum valve and air release valve.
5. Valves shall be suitable for pressures up to 250 psi.
6. Air release, air/vacuum valves, and combination air valves shall conform to the requirements set forth in the DWM’s Specification Section 15100 and standard details.

V. Fire Hydrant Assembly
1. Fire hydrants shall be the compressive, post style, dry barrel type, and shall conform to the requirements of ANSI/AWWA C502 and local code requirements. The valve opening shall not be less than 4½-inch (115 mm). All hydrants shall be complete including joint assemblies.
2. Hydrants shall be suitable for working pressure of 150 psi and shall be hydrostatically factory tested to 300 psi.
3. All working parts, including the seat ring, shall be removable through the top without excavating or disturbing the barrel of the hydrant.
4. Hydrants shall be constructed with a lubricant chamber which encloses the operating threads and which provides automatic lubrication of the threads and bearing surfaces each time the hydrant is operated. This assembly shall be comprised of a top O-ring serving as a dirt and moisture barrier and a lower O-ring which will serve as a pressure seal.
5. Hydrants shall include two 2½-inch (65 mm) hose nozzles and one 4½-inch (115 mm) pumper connection with National Standard Fire Hose Threads unless specified otherwise in the Plans or DWM’s Specification Section 02645. Hydrant threads shall comply with the specifications of the local agency providing fire service.
6. Hydrant nozzle shall be constructed to face in any direction at any time by removing the safety flange bolts and revolving the head without digging or shutting off water.
7. Hydrants shall have pentagon operating nut measuring 1½-inch (40 mm) point to flat and shall open by turning counter-clockwise.
8. Hydrant shall have a safety-type vertical barrel with a minimum 3½-foot bury and be designed with safety flange and/or bolts to protect the barrel and stem from damage, eliminate flooding, and allow rapid replacement if hydrant is struck. All risers necessary for deeper bury applications shall be provided by the hydrant manufacturer.
9. Hydrants shall include positive, automatic drain valves which shall be fully closed when the main valve is open.
10. Bottom inlet of hydrant shall be provided with mechanical joint connection complete with accessories as specified and shall be 6-inch (150 mm) nominal diameter.
11. Fire hydrant shall be painted above ground with rust inhibiting enamel paint in accordance with DWM’s Specification Section 02645.
12. Hydrant assemblies shall be restrained from the hydrant to the tee at the main.

W. Backflow Prevention Devices
1. Backflow prevention devices shall be installed where indicated on the Plans and shall meet all applicable AWWA, State, and local code/ordinance requirements.

2. Backflow preventer materials shall conform to the requirements and standards set forth in the DWM’s Specification Section 15150.

X. Thrust Collars and Thrust Blocks

1. Concrete used for thrust collars or thrust blocks shall meet the “Class A” requirements for concrete listed in Section 500.

2. Thrust collars shall include welded-on collars attached by the pipe manufacturer or retainer glands. Concrete shall be poured continuous around the pipe and bear against undisturbed earth.

3. Reinforcing steel shall meet the requirements set forth in the Plans or DWM’s Specification Section 03301.

4. Mechanical joint restraints shall be utilized in lieu of thrust blocks with the approval of Utility Owner.

Y. Manholes

1. Precast reinforced manholes shall be manufactured in accordance with ASTM C478 and shall have a minimum wall thickness of 5 inches (127 mm). All concrete shall have a minimum compressive strength of 4,000 psi when tested in accordance with ASTM C478.

2. Joints between precast sections shall be sealed by means of rubber O-ring gaskets or flexible butyl rubber sealant.

3. Non-shrinking grout or a flexible seal shall be used to seal the pipe penetrations and prevent water from entering the manhole.

4. Manhole rings and cover shall be per the DWM’s Specification Section 05500 and standard details.

670.2.02 Delivery, Storage, and Handling

A. Handle pipe, fittings, valves, and accessories carefully to prevent damage. Handle pipe by rolling on skids, forklift, or front end loader. Do not use material damaged in handling. Slings, hooks, or pipe tongs shall be padded and used in such a manner as to prevent damage to the exterior coatings or internal lining of the pipe. Do not use chains in handling pipe, fittings, or appurtenances.

B. To unload pipe, carefully lift and lower it into position using approved padded slings, hooks, or clamps. Furnish equipment and facilities for unloading, handling, distributing, and storing pipe, fittings, valves, and accessories. Make equipment available at all times for use in unloading. Do not roll, drop or dump materials. Any materials dropped or dumped shall be subject to rejection without additional justification.

C. Stored materials including salvaged materials shall be kept in suitable areas safe from damage. The interior of all pipe, fittings, and other appurtenances shall be kept free from dirt or foreign matter at all times. Store and support plastic pipe to prevent sagging and bending. Store plastic pipe and gaskets to prevent exposure to direct sunlight. Valves and hydrants shall be stored and protected from damage by freezing.

D. Pipe shall not be stacked higher than the limits recommended by the manufacturer. The bottom tier shall be kept off the ground on timbers, rails, or concrete.

670.3 Construction Requirements

670.3.01 Personnel

A. General Provisions 101 through 150.

B. Construction and installation of all water utilities shall be performed by a Contractor prequalified/registered with GDOT.

C. All work specified in this section, except for water system service line installation shall be performed by a Contractor with a valid Utility Contractor’s license issued by the State of Georgia. Water service line installation shall be performed by either a Utility Contractor licensed in the State of Georgia or by a Master Plumber licensed in the State of Georgia.

D. Qualifications
1. Ensure that the construction and installation of the water distribution system is performed by a contractor prequalified/registered by the Department of Transportation and City of Atlanta. Construct water line distribution and supervise the work with personnel who are experienced in this type of work. Visit and examine the work site and all conditions, and take into consideration all such conditions that may affect the work. At least 10 days after Notice to Proceed (NTP), submit to the Engineer for review and approval two (2) completed PIPELINE CONTRACTOR QUALIFICATIONS applications.
 a. The entire PIPELINE CONTRACTOR QUALIFICATIONS application shall be completed and all supporting documentations shall be included. Failure of the Contractor to complete all forms or to include all requested supporting documentations will result in the Pipeline Contractor being disqualified from the work. The Department and the City of Atlanta Engineer will have 30 days to review and approve the application.
 b. The Pipeline Contractor shall meet all qualifications within the application in order to work on the water line installation.
 c. The Department and City of Atlanta will be sole judge of the qualifications of the pipeline contractor. If the applicant is rejected, the Contractor shall submit another applicant. No additional time or compensation will be considered for resubmittal of another applicant.
 d. Provide a detail sequence of construction for the waterline installation that describes all materials, construction plan and method of construction, and equipment to be used.
2. No work on the waterline installation shall begin until the qualification, construction plan and method have been approved in writing by the Engineer.
3. The PIPELINE CONTRACTOR QUALIFICATIONS application forms are located in City of Atlanta’s standard specifications, attached.

670.3.02 Equipment
A. Ensure all equipment used is in conformance with the requirements and standards set forth in the DWM’s standard specifications, current published edition.

670.3.03 Preparation
General Provisions 101 through 150.

670.3.04 Fabrication
General Provisions 101 through 150.

670.3.05 Construction
A. Finding Existing Underground Utilities and Obstructions
 2. According to the best information available to GDOT, all known water lines, sewer lines, gas lines, telephone conduits, drainage structures, etc. are shown on the Plans. However, to find such installations, use an electronic pipe and cable finder in locating existing installations or obstructions to the work.
 3. When unforeseen conflicts require Plan changes, perform the work as altered according to Subsection 104.03 and Subsection 104.04.
 4. Follow all Utility Owner customer notification requirements and obtain approval from the Utility Owner and GDOT Project Manager prior to disrupting any existing water services as required to install the water facilities shown on the Plans.
B. Jack and Bore
 Comply with Section 615 for sewer main installations by jack and bore.
C. Directional Drilling
 1. Install water mains and services by means of directional drilling at locations shown on the Plans or where approved by GDOT or Utility Owner. Provide submittals and follow all relevant procedures and requirements set forth in the DWM’s Specification Section 02595.
 2. The Contractor shall not initiate horizontal directional drilling until all submittals are received, reviewed, and accepted by GDOT and the Utility Owner, and all required permits are obtained.
3. The Contractor shall select drilling additives and fluid mixture proportions to ensure continuous circulation, bore stability, reduce drag on the pipe, and completely fill the annular space between the bore and the pipe to ensure stability and control settlement.

4. The Contractor shall submit contingency plans for remediation of potential problems that may be encountered during the drilling operations. The contingency plans shall address the observations that would lead to the discovery of the problem and the methods that would be used to mitigate the problem. Potential problems that shall be addressed include:
 a. Loss of returns/loss of circulation of drilling fluid.
 b. Encountering obstruction during pilot bore or reaming/pullback.
 c. Drill pipe or product pipe cannot be advanced.
 d. Deviations from design line and grade exceed allowable tolerances.
 e. Drill pipe or product pipe broken off in borehole.
 f. Product pipe collapse or excessive deformation occurs
 g. Utility strike.
 h. Hydrollock occurs or is suspected.
 i. Excessive ground settlement or heave of ground surface or existing utilities.
 j. Inadvertent returns / hydrofracture or surface spills resulting in drilling fluids entering water or reaching the surface.

5. Pipe damaged in directional drilling operations shall be removed and replaced at no additional expense to GDOT or the Utility Owner.

6. Voids developed or encountered during the installation operation shall be pressure grouted with a grout mix approved by GDOT.

7. Installation shall include a locatable conduit system, with identification markers on each side of GDOT right-of-way where applicable. Two (2) insulated 8-gauge solid copper tracers wire shall be attached to the leading end of the pipe pulling head and shall extend the full length of the installed pipe.

8. The location and alignment of the pilot drill progress shall be continuously monitored for compliance with the proposed installation alignment and for verification of the depth of the bore. Monitoring shall be accomplished by computer generated bore logs which map the bore path based on x, y, z coordinate information provided by the locating/tracking system. Readings or plots shall be obtained on every drill rod, and shall be provided to the Inspector on a daily basis. Deviations between the recorded and design bore path shall be calculated and reported on the daily log. If the deviations exceed tolerances specified elsewhere, such occurrences shall be reported immediately to GDOT. The Contractor shall undertake all necessary measures to correct deviations and return to design line and grade.

9. Upon completion of the directional drill the Contractor shall furnish GDOT and the Utility Owner an as-built drawing along with a report of the monitoring of the drilling fluids during the pilot hole and back reamed hole.

10. Drilling fluid pressures, flow rates, viscosity, and density shall be monitored and recorded by the Contractor. The pressures shall be monitored at the pump. These measurements shall be included in daily logs submitted to GDOT. The Contractor shall document modifications to the drilling fluids, by noting the types and quantities of drilling fluid additives and the dates and times when introduced. The reason for the addition of drilling fluid additives or other modifications shall be documented and reported.

11. Management and disposal of drilling fluids shall be the Contractor’s responsibility. Excess drilling fluids shall be contained at the entry and exit points until recycled or removed from the site. All drilling fluids shall be disposed of in a manner acceptable to the appropriate local, state and federal regulations. The Contractor’s work will be immediately suspended by GDOT whenever drilling fluids seep to the surface other than in the boring entrance or exit pit, or when a paved surface is displaced.

12. Surfaces damaged by the work shall be restored to their preconstruction conditions at no additional cost to GDOT or Utility Owner, and with no increase in contract time.
13. The following items shall be as shown on the Plans, unless otherwise approved in writing by GDOT:
 a. Entry / exit points
 b. Drill entry / exit angles
 c. Pilot bore path
 1) Radius of Curvature
 2) Entry / exit tolerances: Contractor shall be solely responsible for all work necessary to correct excessive deviations from line and grade, including re-drilling, redesigning connections, and acquiring additional easement, at no additional cost to GDOT or Utility Owner and without schedule extension.

14. The pilot bore shall be pre-reamed and reamed using equipment and methods submitted by the Contractor. The Contractor shall completely ream the bore to the final diameter prior to pullback.

15. Pullback: The pipe shall be installed by pulling it into the reamed bore path in a continuous operation, behind a final reaming tool selected by the Contractor. The pipe shall be isolated from excessive torsional and axial stresses by a swivel device with a pre-established breakaway tensile capacity that is lower than the allowable tensile strength of the pipe. The maximum pull (axial tension force) exerted on the pipelines shall be measured continuously and limited to the maximum allowed by the pipe manufacturer with an appropriate factor of safety so that the pipe or joints are not overstressed. The end of the pipe shall be closed during the pull back operation.

16. Pipelines shall be adequately supported during installation so as to prevent overstressing or buckling. The Contractor shall provide adequate support/rollers along the pipe layout area to support the required length of pipe for the bore. The pipe layout area shall be cleared of all large stones, construction debris, or other foreign objects that could damage the pipe during pullback. The Contractor shall monitor and inspect pipe rollers and method for suspending pipe at entry during the pullback operation to avoid damage to the pipe.

17. The end of the pipe shall be closed during the pull back operation.

18. Each length of pipe shall be inspected and cleaned as necessary to be free of debris immediately before joining.

19. The Contractor shall at all times handle the pipe in a manner that does not overstress or otherwise damage the pipe. Vertical and horizontal curves shall be limited so that wall stresses do not exceed 50% of yield stress for flexural bending of the pipe. If the pipe is buckled or otherwise damaged, the damaged section shall be removed and replaced by the Contractor at his expense. The Contractor shall take appropriate steps during pullback to ensure that the pipe and tracer wires will be installed without damage.

20. If necessary, the pipe shall have water added as it enters the bore to achieve neutral buoyancy and reduce pullback loads and to ensure that adequate internal pressure is maintained at all points to counter balance collapse pressures.

21. The Contractor shall cease pullback operations if the pipe is damaged and shall remove the pipe from the bore and repair the pipe using the manufacturer’s recommended procedure or replace the damaged pipe before resuming installation.

22. Damage to the pipe resulting from manufacturer defects, installation, or grouting is the responsibility of the Contractor, including costs for replacement and labor and materials. To confirm no damage to the pipe, upon completion of pull back, the Contractor shall pull a sphere or pig through the entire length of the pipeline. The pig shall be one inch less in diameter than the internal diameter of the product pipe, capable of allowing water to pass through it, complete with a pulling cable on either side. If the pig or sphere cannot pass through the pipe, it shall be considered collapsed and damaged.

23. After the carrier pipe is completely pulled through the bore, a sufficient relaxation period as recommended by the pipe manufacturer shall be provided before the final pipe tie-in.

24. The Contractor shall conduct a final hydrostatic test of the installed pipeline. Final test shall be in accordance with these specifications. The Contractor shall repair any defects discovered during this test, and repeat until the pipe passes the test.

D. Excavating Trenches
1. The Contractor shall provide all necessary shoring and bracing materials as required to assure safe working conditions and to protect the excavations. The Contractor shall be required to fully comply with all applicable OSHA Excavation Safety Standards. No separate payment shall be made for any special procedure used in connection with the excavation.

2. Excavate trenches to the proper depth and width as follows:
 a. Trench to Grade: Excavated trench bottoms shall be firm, free from boulders, and conform to the established grade. Limit open trench excavation to a maximum of three 300 feet (90 m) ahead of completed backfill.
 b. Care shall be taken not to over excavate except where necessary to remove unstable material, irregularities, lumps, rock, and projections. Unnecessary over excavation shall be replaced at the Contractor's sole expense and in accordance with Subsection 670.3.05.
 c. Excavation carried below the established grade lines shown or established by the Utility Owner shall be backfilled according to Section 207 and Subsection 670.3.05. Use Class I or Class II Soils (defined in Section 810) and firmly compact the soil.
 d. Where the established grade of a trench is in rock, undercut the bottom of the trench by at least 6 inches (150 mm) beneath the pipe or conduit and the greater of 24 inches (600 mm) wider than the pipe/conduit (12 inches or 300 mm each side) or 42 inches (1050 mm) wide, then backfill and compact according to Subsection 670.3.05.
 e. Excavation in pavement and pavement patching shall be according to GA Standard No. 1401. Remove the pavement according to Section 444, except no separate payment shall be made for sawed joints.
 f. Dewatering: Remove all water from excavations and maintain the excavations free of water while construction therein is in progress. Provide dewatering equipment as necessary to conform to this requirement. Dewatering procedures must meet all state and local regulatory requirements.

3. Minimum Trench Depth
 a. Excavate trenches to provide at least 48 inches (1.2 m) cover depth directly above the pipe to the finished pavement surface, sidewalk, grass, etc. unless indicated otherwise on the Plans or by the Utility Owner and GDOT Project Manager. In order to avoid existing utilities, it may be necessary for the pipe to be laid shallower or deeper than the minimum cover specified. At such time the Contractor shall not be allowed extra compensation for additional excavation necessary for deeper installations.
 b. Side slopes of the trenches shall be as nearly vertical as practicable. Trenches in excess of 5 feet (1.5 m) deep shall either have the trench sides laid back to conform to OSHA requirements for trench safety, if such area is available within the limits of excavation, or, alternatively, trenches deeper than 5 feet (1.5 m) shall be excavated via trench box or shored and braced.
 c. If any part of a water main is to be placed in or under a new embankment, finish the embankment to at least a 2-foot plane above the outermost portion of the pipe barrel before excavating the trench.

4. Trench Width: Excavate trenches to uniform widths wide enough to allow proper installation of pipe, fittings, and other materials, a minimum of 6 inches (150 mm) and a maximum of 12 inches (300 mm) each side of the pipe or conduit.

5. Trench Bell Holes: Excavate bell holes deeply and widely enough to make joints and to allow the pipe barrel to rest firmly on the trench bottom.

6. Trench bottom: Excavate and shape trench bottoms to provide uniform bearing and support of pipes and conduits. Shape subgrade to provide continuous support of bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits/pipes. Remove projecting stones, tree roots, debris, and sharp objects along trench subgrade. Abrupt changes in grade of the trench bottom shall be avoided. Unless otherwise indicated in the Plans or DWM’s Specification Section 02225, trenches for water mains shall be graded as much as possible to avoid high and low points that necessitate air release valves.

7. Excavations may be completed and refilled either by hand or by machinery. Hand tool excavation shall be conducted where necessary to protect existing utilities and structures.
8. In the event that unsuitable material is encountered at or below the excavation depth specified or shown on the Plans, the Utility Owner and GDOT Project Manager shall be notified. Such material shall be removed and replaced with suitable material in accordance with Section 205 by the written request of the GDOT Manager.

E. Connecting to Existing Mains

1. Connect to an existing main with the appropriate fittings according to the Plans or the Utility Owner and GDOT Project Manager. When making connections under pressure, (i.e. when normal water service must be maintained), furnish and use a tapping sleeve and valve assembly or line stop fittings as indicated. Coordinate with Utility Owner 72 hours in advance for water service interruptions and temporary shut-offs. Evening or weekend work may be required to complete direct connections and tie-ins. Connect to existing mains as follows:
 a. Before opening new pipeline trenches, locate the various points of connection to be made into existing pipelines. If necessary, uncover pipelines for the Utility Owner and GDOT Project Coordinators to prescribe the connections and fittings needed.
 b. Connect to existing pipelines only to meet operating requirements. Cut existing lines only after obtaining the Utility Owner and GDOT Project Manager’s permission.
 c. Provide temporary line stops, associated fittings, and bypass pumping as indicated on the Plans and as necessary when cutting and plugging existing water mains to prevent service interruptions. Line stop and associated fittings shall be suitable for working pressures of 250 psi.
 d. Connections to existing asbestos cement pipe shall be installed as indicated on the Plans or in DWM’s Specification Section 02665. Cutting, removing, handling, and disposing of asbestos cement pipe shall be in accordance with requirements established by EPA, OSHA, GDOT, NIOSH, and the State of Georgia Environmental Protection Division, and any other applicable laws and ordinances.

F. Laying Water Mains and Appurtenances

1. Preparing and Handling Pipes
 a. Thoroughly clean the pipe and fittings before laying them. Keep them clean until accepted.
 b. Use suitable tools and equipment. Do not damage the pipe, especially the cement lining inside the pipe.
 c. Cut pipe in a manner to avoid damage to pipe or lining, leaving a smooth end at right angles to pipe axis. Smooth and bevel edges of cut pipe for push-on, gasket type joints.
 d. Bedding shall be provided as specified by the Utility Owner or pipe manufacturer for the type of conditions encountered. Bedding typically consists of granular soil free of lumps, clods, cobbles, and frozen materials, and shall be graded to a firm-but-yielding surface without abrupt changes in bearing value. Unstable soils and rock ledges shall be undercut from the bedding zone and replaced with suitable material.
 e. Bed pipe on coarse granular material in flat bottom trench with entire pipe barrel bearing uniformly on coarse granular material, except for an approximately 18-inch (450 mm) gap at pipe balance point for sling removal. Hand excavate and backfill as required to provide uniform and continuous bearing and support for the pipe. Do not support pipe on hubs or end bells. Consolidate coarse granular material under and around pipe up to pipe centerline by tamping.
 f. Join pipe with bells facing direction in which laying operation is progressing. Lay pipe upgrade wherever line grade exceeds 10%.
 g. Carefully examine pipe for cracks and other defects and do not lay defective pipe. If pipe or castings appear to be cracked, broken, or defective after laying, remove and replace those sections.

2. Alignment and Gradient
 a. Pipe alignment and gradient shall conform to the Plans. Deflect pipe lines only where indicated on the Plans, within allowable horizontal and vertical deflection angles according to the manufacturer.
 b. Water mains shall be laid at least 10 feet (3 m) horizontally from any existing or proposed sanitary sewer, storm sewer or sewer manhole. The distance shall be measured edge-to-edge. When local
conditions prevent a horizontal separation of 10 feet (3 m), the water main may, on a case-by-case basis, be laid closer to a sewer provided the water main is laid in a separate trench or on an undisturbed earth shelf located on one side of the sewer at such an elevation that the bottom of the water main is at least 18 inches (450 mm) above the top of the sewer.

c. Maintain a vertical separation of at least 18 inches (450 mm) between the crown of sanitary sewers and the invert of existing or proposed water mains with the sewer located below the water main. Where a vertical separation of 18 inches (450 mm) cannot be provided, and the water main cannot be relocated to provide adequate clearance, center one full length of water main over the sewer so that both joints of the water main will be as far from the sewer as possible.

3. Special Requirements for Laying Water Mains
 a. Excavate, clean, lay, joint, and backfill progressively and uniformly according to these requirements:
 1) Never leave pipe in the trench overnight without completely jointing and capping.
 2) Do not leave completed pipeline exposed in the trench. Backfill and compact the trench as soon as possible after laying, jointing, and testing are complete.
 3) At the close of work each day and when laying pipe, close the exposed end of the pipeline in the trench with an approved wood or metal head or barrier.
 4) If necessary to cover the end of an incomplete pipeline with backfill, close the end of the pipe with a satisfactory cap or plug.

G. Installing Water Mains by Open Cut
 1. Use the following flexible joints for connections inside the roadway shoulders or curbs and gutters:
 a. Mechanical Joints:
 1) When using mechanical joints, thoroughly wash bell sockets, spigots, gland, gasket, nuts, and bolts with soapy water before assembly. Keep these parts wet until the jointing operation is complete.
 2) Tighten nuts within the torque range recommended by the manufacturer. Check the tightening tolerance with a torque wrench.
 3) If effective sealing is not attained at the maximum recommended torque, disassemble, thoroughly clean, then reassemble the joint.
 4) Do not overstress bolts to compensate for improper installation or defective parts.
 b. Push-On Type Joints
 1) Use push-on joints made according to the manufacturer’s recommendations.
 2) Install PVC pipe in accordance with AWWA C605.
 3) Install ductile iron pipe in accordance with AWWA C600.
 2. Restraints for pipe joints and fittings shall be provided as specified and as shown on the Plans. Restraints shall be installed per manufacturer’s recommendations.
 3. Buried ductile iron pipe and fittings shall be polyethylene encased as specified and as indicated on the Plans. Polyethylene encasement tubing shall be secured with polyethylene tape and installed in accordance with ANSI/AWWA C105/A21.5.
 4. Unless otherwise specified by DWM’s Specification Section 02665, provide pipe detection wire on all non-metallic pipe systems. Tape the tracer wire to the top center of the pipe at intervals which prevent wire displacement during backfilling operations. Stub tracer wire up 6 inches (150 mm) above finished grade at all valves and fire hydrants. For splices, use direct bury kits. After backfilling is complete, test electrical continuity of each tracer wire segment and provide test results to Utility Owner and GDOT Project Manager.
 5. Install continuous underground warning tape during backfilling of trench for underground water distribution piping. Install 12 inches (300 mm) below finished grade, or 6 inches (150 mm) below subgrade under pavements and walkways, and buried directly over piping.
 6. Use pipe cutters when cutting pipe or special castings. Do not use a hammer, chisel, or a cutting torch.
7. At locations where water mains do not meet minimum depth of cover requirements, Contractor shall notify Engineer of locations where water mains do not meet minimum depth of cover requirements. Engineer shall provide recommendation before Contractor proceeds.

8. If HDPE pipe is to be installed where high groundwater table or water surrounding the pipe is expected, precautions shall be taken to provide neutral buoyancy to prevent floatation or a change in alignment.

9. Isolation Valves on Water Mains: Install and joint gate and butterfly valves as specified in Subsection 670.2.01 in accordance with AWWA C600. Include the valve box and valve marker where required.

10. Air release valves shall be located at high elevation points on the pipeline. Air release valves shall be installed at locations indicated in the Plans and in accordance with manufacturer’s recommendations.
 a. Air release valves shall be installed in a shallow manhole or vault as indicated in the Plans and DWM’s Specification Section 15151. Automatic air relief valves shall not be used in areas where flooding of the manhole or vault may occur.
 b. An isolation valve shall be installed between the air release assembly and the connection to the main.
 c. The Contractor shall furnish and install at no additional cost to GDOT or Utility Owner all necessary fittings for the installation of air release valves at high points.

11. Pressure reducing/sustaining valves of the size and type indicated shall be installed as shown on the Plans per manufacturer’s recommendations.

12. Fire Hydrants: Install and joint hydrants as specified in Subsection 670.2.01 and in accordance with AWWA C600. Include required vertical extension sections. Also, include pipe strap installation, restraints, crushed stone drain, and backfill according to the Plans and this Section. Spacing of fire hydrants shall be as indicated in DWM’s Specification Section 02645.

13. Concrete Thrust Collars and Thrust Blocks: If required, furnish materials and install thrust collars or concrete blocking according to Subsection 670.2.01. Form and pour concrete thrust collars or blocks in accordance with the Plans and the DWM’s Specification Section 02665. Blocking shall be poured against undisturbed earth and all forms shall be removed before backfilling.

14. Backfilling
 a. Furnish equipment, labor, and when necessary material required for backfilling the pipe line trenches according to Section 207, and as follows:
 1) When testing for visual leaks in open trenches, do not backfill until testing is complete and leaks are eliminated.
 2) When retaining pavement adjacent to trenches, replace removed pavement with the same or better material when approved in accordance with the appropriate Section for the pavement type replaced.
 3) Place backfill on subgrades free of mud, frost, snow, or ice.
 4) Place and compact bedding course on trench bottoms and where indicated. Shape the bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits/pipes.
 5) Backfill shall include Class I or Class II Soils as defined in Section 810 or suitable material that conforms with DWM’s Specification Section 02225.
 6) Backfill shall be placed in two stages: first, side fill to a height of 12 inches (300 mm) above the top of pipe; second, overfill to former surface grade. Side fill shall consist of granular material laid in 6-inch (150 mm) layers each consolidated by mechanical tamping and controlled addition of moisture, to a density of 95% as determined by as determined by the Standard Proctor test (AASHTO T-99 Method D) or GDT 67. Overfill shall be layered and consolidated to match the entrenched material in cohesion and compaction. The top 12 inches (300 mm) shall be compacted to 100% of specified density. Consolidation by saturation or ponding shall not be permitted.
 7) Soil Moisture Control: Uniformly moisten and aerate subgrade and each subsequent fill or backfill soil layer before compaction to within 2% of optimum moisture content. Remove and
replace, or scarify and air dry, otherwise satisfactory soil material that exceeds optimum moisture content by 2% and is too wet to compact to specified dry unit weight.

8) Initial backfill shall be carefully compacted under pipe haunches and evenly up on both sides and along the full length of piping or conduit to avoid damage or displacement of piping or conduit. Place and compact fill and backfill of satisfactory soil to final subgrade elevation. Backfill voids with satisfactory soil while removing shoring and bracing and/or trench boxes.

9) After backfilling, maintain temporary surface restoration per GA Standard No. 1401 until permanent repaving is complete. No separate payment shall be made for replaced pavement.

15. Disinfection of Water Mains
 a. New and existing pipelines and appurtenances shall be disinfected before placing into service. Disinfection can be conducted in conjunction with the pressure test.
 b. Before the main is chlorinated, it shall be filled to eliminate air pockets and shall be flushed to remove particulates.
 c. During disinfection of the water mains, an appropriate cross-connection control device, consistent with the degree of hazard, shall be provided for backflow protection of the active distribution system.
 d. Chlorination: Sterilize using only potable water with calcium hypochlorite (HTH), 1% chlorine solution, or other products acceptable to the Utility Owner and GDOT Project Manager and Department of Public Health. Comply with AWWA C651 including Section 9 procedures on final connections to existing mains.
 1) The chlorine solution used for disinfection of water mains shall have a free chlorine residual concentration not less than 25 mg/L or in accordance with DWM’s Specification Section 02675.
 2) Add enough disinfectant to provide a chlorine residual of not less than 10 parts per million (ppm) in 24 hours or as required in DWM’s Specification Section 02675. All valves and hydrants shall be operated to ensure disinfection of the appurtenances.
 3) At the end of 24 hours, check the chlorine residual. If it is less than 10 ppm, add additional chlorine and check the line again after 24 hours.
 e. After the applicable retention period, the chlorinated water must not be disposed in a manner that will harm the environment. Neutralizing chemicals, such as Sulfur Dioxide, Sodium Bisulfite, Sodium Sulfite or Sodium Thiosulfate can be used to neutralize the chlorine residual remaining in the water to be wasted.
 f. After sterilization, flush the line with potable water until the chlorine residual is equal to the existing system.
 1) After final flushing and before the water main is placed into service, water samples shall be collected from the main and tested for microbiological quality in accordance with the Georgia Rules for Safe Drinking Water. Samples shall be taken in the presence of the Utility Owner and GDOT Project Manager.
 2) When test results are not satisfactory, the pipeline shall be flushed and disinfected again as necessary without additional compensation until satisfactory results are obtained.

H. Laying Service Lines and Appurtenances
 1. Except as modified in this Section, construct and install service connection assemblies and lines according to the Plans and the requirements for laying water mains. Install service lines at locations shown on the Plans or where designated by the Utility Owner and GDOT Project Manager.
 2. Install new pipe from the water main to the final location of the meter or to points designated by the Utility Owner and GDOT Project Manager to connect with existing or future service lines on abutting property.
 3. No water service connections shall be performed until the main is tested and disinfected. Water service lines shall be tested and disinfected prior to connection to the main.
 4. If required, install water service line inside casing pipe according to the Plans.
5. At roads, paved drives, retaining walls, and other paved areas, install service tubing or casing pipe by pushing, pulling, or augering techniques. At all other locations, install service tubing by trenching and backfilling unless directed otherwise by GDOT.

6. Service line installation includes all connections using saddles, unions, valves, fittings, corporation stops, curb stops, casing, and any and all appurtenant work required to provide a complete water service connection.

7. Excavate for service lines as specified in Subsection 670.3.05 with the following exceptions:
 a. Ensure that trenches under pavements and across driveways are deep enough to provide at least 48 in (1.2 m) of cover, unless otherwise specified by DWM’s Specification Section 02668 or directed by the Utility Owner and GDOT Project Manager.
 b. At other areas, trench depth and backfill cover may be adjusted at the discretion of the Utility Owner and GDOT Project Manager to provide at least 18 in (450 mm) of cover.

8. Backfill service lines as specified in Subsection 670.3.05.

9. All service lines, fittings, and appurtenances necessary for the water service connections shall be installed and backfilled in accordance with the manufacturer’s recommendations and as per DWM’s Specification Section 02668 and standard details.

I. Cutting and Capping Existing Water Mains

1. Disconnect by sawing or cutting and removing a segment of existing pipe where cutting and capping or plugging is shown on the Plans or directed by the Utility Owner or GDOT Project Manager. Provide a watertight pipe cap or plug and restraint mechanism to seal off existing mains indicated to remain in service. If water main is to be abandoned or removed and not specified to be grout filled, seal ends with a pipe cap or plug or with a masonry plug and minimum 6-inch (150 mm) cover of concrete on all sides around the end of the pipe.

2. The Contractor shall be responsible for uncovering and verifying the size and material of the existing main to be capped or plugged.

3. Abandoned manholes and water mains greater than 6-inch (150 mm) shall be filled with flowable fill per Section 600 at the locations indicated on the Plans. Air release valves and water service connections along the abandoned main shall be plugged prior to grouting. Prior to backfilling, the bottom of the manhole shall be broken up in such a manner that water will readily pass through. The top portion of the manhole structure shall be removed in order to establish a minimum of 3 feet cover from subgrade or finished grade when not under the pavement and filled with sand or suitable backfill.

4. Water mains shall be flushed prior to placement of flowable fill. Use concrete or grout pumps capable of continuous delivery at planned placement rate with sufficient pressure to overcome friction and fill the sewer main.

J. Relocating, Adjusting, and Removing

1. Fire Hydrant Assemblies
 a. Relocate, adjust to grade, or remove fire hydrant assemblies including valve and valve boxes according to the Plans or as designated by the Utility Owner and GDOT Project Manager.
 b. Protect items during removal and relocation. Replace lost or damaged Items at no expense to GDOT or the Utility Owner.
 c. Disconnect each joint before removing items from the trench.
 d. Install relocated fire hydrant assemblies with tapping sleeve, and as specified herein for new fire hydrant assemblies.
 e. Test for leakage, adjust, and retest until no leaks appear.
 f. Backfill as specified in Subsection 670.3.05.
 g. Consider valve boxes part of the valve assembly and remove them intact with the valve.

2. Water Valves and Boxes
 a. Adjust or remove water valves and valve boxes according to the Plans or as designated by the Utility Owner and GDOT Project Manager.
b. Protect items during adjustment or removal. Replace lost or damaged items at no expense to GDOT or the Utility Owner.

c. Disconnect each joint before removing items from the trench.

d. Test for leakage, adjust, and retest until no leaks appear.

e. Backfill as specified in Subsection 670.3.05.

f. Consider valve boxes part of the valve assembly and remove them intact with the valve.

3. Existing Water Meters and Boxes

a. Relocate existing water meters and boxes according to the Plans or the Utility Owner and GDOT Project Manager.

b. To relocate water meters, remove the existing meter, associated backflow preventer, and box and replace with a short section of pipe.

c. Inspect along with the Utility Owner and GDOT Project Manager each meter and backflow preventer before removal to determine the condition of each.

d. Relocation of water meters and boxes shall include without additional compensation, required pipe, unions and appurtenances, adapter fittings, necessary storage protection, and installation of meter, backflow preventer, meter box, and curb stop in the existing service line.

4. Existing Water Service Lines

a. Water lines shall be adjusted to grade by excavating the existing lines, lowering or raising the lines, and backfilling according to the Plans or the Utility Owner and GDOT Project Manager.

b. Furnish new materials or fittings required for the adjustment without additional compensation.

c. Change connections at the main that result from this work.

d. Repair leaks and damage caused by the operations at no expense to GDOT.

e. When retaining a water meter where an existing service line is to be adjusted, adjust the existing meter and box to the proper grade without additional compensation.

5. Other Water Appurtenances

a. Relocate, adjust to grade, or remove water main appurtenances including but not limited to air release valves, backflow preventers, pressure reducing/sustaining valves according to the Plans or as designated by the Utility Owner and GDOT Project Manager.

6. Utility related items identified on the Plans to be salvaged are the property of the Utility Owner. Contractor shall coordinate with Utility Owner on delivery of salvaged materials. Should the Utility Owner choose to not accept these materials they shall be removed from the project site as soon as practical.

K. Aerial Crossings

1. Support must be provided for all joints in pipes utilized for aerial crossings. The supports must be installed to prevent frost heave, overturning, and settlement. Precautions against freezing, such as insulation, shall be provided.

2. When the aerial crossing is accomplished by attachment to a bridge or drainage structure, the crossing shall meet all requirements of the agencies that own or have jurisdiction over such structures.

3. Aerial installations shall be installed to avoid or minimize stream blockage during normal high water events.

4. Underground valves shall be provided at both ends of the aerial crossing so that the section can be isolated for testing or repair. The valves shall be restrained, easily accessible, and not subject to flooding. An air release/vacuum relief valve shall be installed at all high points along the aerial crossing.

5. Appropriate guards shall be installed at both ends of the aerial crossing to prevent public access to the pipe.

670.3.06 Quality Acceptance

A. Materials Certification

For certain products, assemblies and materials, not on GDOT QPL List, and in lieu of normal sampling and testing procedures by the Contractor, the Utility Owner, and GDOT may accept from the Contractor the
manufacturer’s certification with respect to the product involved under the conditions set forth in the following paragraphs:

1. Material certifications shall be provided to GDOT, who shall distribute to the Utility Owner. Material certifications shall be approved by GDOT and the Utility Owner prior to construction. The certification shall state/specify that the named product conforms to these specifications and requirements of the Utility Owner and GDOT, and representative samples thereof have been sampled and tested as specified.

2. The certification shall either:
 a. Be accompanied by a certified copy of the test results, or
 b. Certify such test results are on file with the manufacturer and will be furnished to the Utility Owner and GDOT Project Coordinators upon demand.

3. The certification shall state/specify the name and address of the manufacturer and the testing agency and the date of tests; and sets forth the means of identification which shall permit field determination of the product delivered to the project as being the product covered by the certification.

4. Submit certification in triplicate with two copies of the covered product to the GDOT Project Coordinator, and one copy sent to GDOT’s State Materials and Research Engineer at 15 Kennedy Drive, Forest Park, Georgia. The certification shall specify the project number and contract ID number. No certificate shall be required for Portland cement when furnished from a manufacturer approved by GDOT.

5. GDOT or the Utility Owner will not be responsible for any costs of certification or for any costs of the sampling and testing of products in connection therewith.

6. GDOT and the Utility Owner reserve the right to require samples and test products for compliance with pertinent requirements irrespective of prior certification of the products by the manufacturer. Any materials that fail to meet specification requirements will be rejected.

7. In accordance with the BUY AMERICA requirements of the Federal regulations (23 U.S.C. 313 and 23 CFR 635.410) all manufacturing processes for steel and iron products or predominantly of steel or iron (at least 90% steel or iron content) furnished for permanent incorporation into the work on this project shall occur in the United States. The only exception to this requirement is the production of pig iron and the processing, pelletizing and reduction of iron ore, which may occur in another country. Other than these exceptions, all melting, rolling, extruding, machining, bending, grinding, drilling, coating, etc. must occur in the United States.

 a. Products of steel include, but are not limited to, such products as structural steel piles, reinforcing steel, structural plate, steel culverts, guardrail steel supports for signs, signals and luminaires, and cable wire/strand. Products of iron include, but are not limited to, such products as cast iron frames and grates and ductile iron pipe. Coatings include, but are not limited to, the applications of epoxy, galvanizing and paint. The coating material is not limited to this clause, only the application process.

 b. Records to be provided by the Contractor for this certification shall include a signed mill test report and a signed certification by each supplier, distributor, fabricator, and manufacturer that has handled the steel or iron product affirming that every process, including the application of a coating, performed on the steel or iron product has been carried out in the United States of America, except as allowed by this Section. The lack of these certifications will be justification for rejection of the steel and/or iron product or nonpayment of the work.

 c. The requirements of said law and regulations do not prevent the use of miscellaneous steel or iron components, subcomponents and hardware necessary to encase, assemble and construct the above products, manufactured products that are not predominantly steel or iron or a minimal use of foreign steel and iron materials if the cost of such materials used does not exceed one-tenth of one percent (0.1%) of the total contract price or $2,500.00, whichever is greater.

B. Flushing

1. Prior to testing, water mains shall be cleaned and flushed to remove all sand and foreign matter. Water used for filling and cleaning shall be from an approved potable water source. Sufficient flushing water shall be introduced into the mains to produce a scouring velocity of not less than 3.5 feet per second to
resuspend the solids, and this rate of flow shall be continued until the discharge is clear and no evidence of silt or foreign matter is visible. The Contractor shall dispose of all water used for flushing without causing a nuisance or property damage.

2. In the event that the Contractor cannot obtain the flushing velocity, a poly-pig swab may be used to clean the pipeline. The Contractor shall submit pigging plan to the Utility Owner and GDOT for review. The plan shall include type of pig material, water flow rate, discharge points, poly-pig detector and retrieval options.

C. Hydrostatic Testing of Water Mains

1. When the Utility Owner and GDOT Project Manager approve a section of pipe for testing, the Contractor shall furnish the materials, equipment, and labor to conduct the pressure and leakage tests. Use a test pump, pressure gauge, and a means of measuring the water necessary to maintain the required pressure during the prescribed testing time. All pressure and leakage testing shall be done in the presence of the Utility Owner and GDOT Project Coordinators as a condition precedent to the approval and acceptance of the system. All pipes shall have been thoroughly flushed prior to testing. Simultaneous or separate pressure and leakage tests may be performed.

2. All water for testing and flushing shall be potable water provided by the Contractor, at no cost to the Utility Owner or GDOT, from an approved source. Flow velocity during line filling shall not exceed 2 feet (0.6 m) per second (fps).

3. Testing Requirements
 a. Water mains shall be tested in sections between valves, thereby, testing each valve for secure closure. Testing shall be done immediately after installation and backfilling has been completed.
 b. The mains shall be tested in accordance with the latest revision of AWWA C600 for ductile iron and C605 for PVC under an average hydrostatic pressure of the greater of 1.5 times the maximum working pressure or 150 psi as measured at the lowest point in the system for a minimum of 2 hours. Pressure shall be maintained until all sections under testing have been checked for evidence of leakage.
 c. While the system is being filled with water, air shall be carefully and completely exhausted. If permanent air vents are not located at all high points, the Contractor shall install corporation stops or fittings and valves at such points at no additional expense to the Utility so the air can be expelled as the pipe system is slowly filled.
 d. Makeup water shall be added, as required, to maintain the pressure within 5 psi of the test pressure. The quantity used shall be measured by pumping from a calibrated container. The maximum amount of makeup water allowed shall be determined by the following formula:

 \[L = \frac{SD P^{0.5}}{148,000} \]

 in which,
 \(L \) = Allowable Leakage in gallons per hour
 \(S \) = Length of pipe being tested in feet
 \(D \) = Nominal pipe diameter in inches
 \(P \) = Average test pressure during the test in psi gauge
 e. Visible leaks shall be corrected regardless of total leakage shown by test. All pipe fittings and other materials found to be defective under test shall be removed and replaced. Lines which fail to meet test requirements shall be repaired and retested as necessary until test requirements are met. No additional compensation shall be made for repairs or retesting.

670.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.
670.4 Measurement

Incidentals including excavation, rock removal, backfilling, disinfection, testing, temporary water connections, pavement removal, pavement replacement, and other incidentals required for the installation of water distribution items are not measured for separate payment and shall be included in the applicable Pay Items below. Water mains, service lines, and other associated Items of work in this Specification, complete, in place, and accepted, are measured for payment as follows:

A. Ductile Iron Water Mains
 Ductile iron water mains shall be measured in linear feet (meters) for each size, thickness class, and type (restrained, non-restrained) installed. Measurement shall be horizontally above the centerline of the pipe and shall include the length of valves and fittings.

B. PVC Water Main
 PVC water mains shall be measured in linear feet (meters) for each size and type (restrained, non-restrained) installed. Measurement shall be horizontally above the centerline of the pipe and shall include the length of valves and fittings.

C. Fusible PVC Water Main
 Fusible PVC water mains shall be measured in linear feet (meters) for each size and type installed. Measurement shall be horizontally above the centerline of the pipe and shall include the length of valves and fittings.

D. HDPE Water Main
 HDPE water mains shall be measured in linear feet (meters) for each size and type installed. Measurement shall be horizontally above the centerline of the pipe and shall include the length of valves and fittings.

E. Ductile Iron Fittings
 Ductile iron fittings are considered subsidiary to the water line in which they are used and are not measured for separate payment. This Item includes, but is not limited to, wyes, tees, bends, crosses, sleeves, plugs and caps, and reducers.

F. Restrained Joints
 Joint restraints used with the installation of PVC or ductile iron pipe shall be considered incidental to the pipe installation and are not measured for separate payment.

G. Gate Valves
 Gate valves shall be measured on an individual basis for each size valve and box assembly acceptably installed.

H. Butterfly Valves
 Butterfly valves shall be measured on an individual basis on the number of each size valve and box assembly acceptably installed.

I. Tapping Sleeve and Valve Assembly
 Tapping sleeve and valve assemblies shall be measured on an individual basis on the number of each size tapping sleeve and valve assembly acceptably installed.

J. Fire Hydrant Assemblies
 Fire hydrant assemblies shall be measured on an individual basis on the number of hydrants acceptably installed.

K. Water Service Lines
 Service lines shall be measured in linear feet (meters) for each size of service pipe installed. Measurements are made from end to end and from center of lines to ends of branches and include tapping saddle, sleeve, valves, service connection assemblies, sleeves, adapters, and fittings.
L. Air Release Valve Assembly
 Air release valve assemblies shall be measured on an individual basis on the number of each size and type of air release valve assembly acceptably installed.

M. Blow-Off Assemblies
 Blow-off assemblies shall be measured on an individual basis on the number of each blow-off assembly acceptably installed.

N. Backflow Prevention Device
 Backflow prevention devices shall be measured on an individual basis on the number of each size and type backflow preventer acceptably installed.

O. Water Meter
 Water meters shall be measured on an individual basis on the number of each size meter acceptably installed.

P. Steel Casing
 Steel casing pipe of the wall thickness and diameter specified shall be measured by the linear foot for each size and thickness of steel casing pipe installed. Measurement shall be horizontally above the centerline of the casing.

Q. Relocation of Existing Fire Hydrant Assemblies, Air Release Valves, Water Meters, Backflow Preventers, and Pressure Reducing or Sustaining Valves
 Relocation of existing fire hydrant assemblies, air release valves, water meters, backflow preventers, and pressure reducing or sustaining valves shall be measured on an individual basis on the number of each acceptably relocated including relocation and final adjustment of boxes.

R. Adjustment of Existing Meter Boxes and Valve Boxes to Grade
 Adjustment of existing meter boxes and valve boxes adjusted to grade in their original locations shall be measured on an individual basis on the number of each acceptably adjusted in accordance with Section 611.

S. Adjustment of Existing Backflow Preventers
 Adjustment of existing backflow preventers to grade in their original locations shall be measured on an individual basis on the number of each acceptably adjusted in accordance with Section 611.

T. Removal of Water Meters, Fire Hydrant Assemblies, and Backflow Preventers
 Removal of existing water meters and boxes, fire hydrants assemblies, and backflow preventers shall be measured on an individual basis on the number of each removed.

U. Adjustment of Water Service Lines
 Adjustment of water service lines shall be measured in linear feet (meters) of service line pipe lowered or raised, and shall include the length of valves, fittings, meters, boxes, and other appurtenances. Measurements are made from end to end of actual adjustments.

V. Concrete Thrust Blocks
 Concrete thrust blocking installed shall be measured as indicated in Section 500 per cubic yard of concrete acceptably installed. When Concrete Thrust Blocks is not shown as a pay item, include the cost of the work in the bid price for the appropriate item.

W. Concrete Thrust Collars
 Concrete thrust collars shall be measured on an individual basis on the number of each size thrust collar acceptably installed. When Concrete Thrust Collars is not shown as a pay item, include the cost of the work in the bid price for the appropriate item.
X. Cut and Cap Water Main
 Cutting and capping of water mains shall be measured on an individual basis per each instance of cutting and plugging existing mains as shown on the Plans.

Y. Removal of Water Mains
 Removal of water mains shall be measured per linear foot for each size pipe actually removed in accordance with Section 610. Measurement shall be horizontally above the centerline of the pipe removed and shall include the length of valves and fittings.

Z. Line Stop
 Line stops shall be measured on an individual basis on the number of each size line stop actually installed.

AA. Flowable Fill
 Flowable fill shall be measured as indicted in Section 600 per cubic yard of flowable fill acceptably installed. When flowable fill is not shown as a pay item, include the cost of the work in the bid price for the appropriate item.

BB. Insertion Valve
 Insertion valves shall be measured on an individual basis on the number of each size valve acceptably installed.

CC. Three-Dimensional (3D) Survey
 Three-dimensional survey shall be measured as one lump sum for a complete and accepted survey. This item will be included in the overall pipe measurement. No separate payment for this work.

670.4.01 Limits
 General Provisions 101 through 150.

670.5 Payment
 The Contract Unit Price for each Item, complete and accepted, shall include all costs incidental to the construction of the Item according to the Plans and as specified in this Section. The unit prices bid shall include due allowance for the salvage value of all materials removed from existing or temporary lines and not installed in the completed work. All such surplus items shall become the property of the Contractor unless such surplus items are specified to be salvaged. Payment for any Item listed below is full compensation for the Item or Items complete in place.

A. Ductile Iron Water Mains
 Ductile iron mains shall be paid for at the unit price per linear foot for each diameter pipe installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of pipe, joints and jointing materials, anchoring, warning tape, polyethylene encasement, protection of existing utilities, connections to existing water mains, sampling taps, temporary blow-offs, flushing, cleaning, pigging, chlorine for disinfection, disinfection, backfilling, backfill materials, disposal of unsuitable backfill material, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration and all work and materials necessary to place the pipe into service.

B. PVC Water Main
 PVC water mains shall be paid for at the unit price per linear foot for each diameter pipe installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of pipe, anchoring, tracer wire, warning tape, protection of existing utilities, connections to existing water mains, sampling taps, temporary blow-offs, flushing, cleaning, pigging, chlorine for disinfection, disinfection, backfilling, backfill materials, disposal of unsuitable backfill material, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to place the pipe into service.
C. Fusible PVC Water Main

Fusible PVC water mains shall be paid for at the unit price per linear foot for each diameter pipe installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, entry/exit pits, installation of pipe, joints and jointing materials, tracer wire, warning tape, mechanical joint adapters, protection of existing utilities, connections to existing water mains, fusion process materials and equipment, directional drilling materials and equipment, tracking system, assembling, welding, supporting, stringing, pulling, pigging, cleaning, sampling taps, temporary blow-offs, flushing, chlorine for disinfection, disinfection, backfilling, backfill materials, disposal of unsuitable backfill material, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, and restoration, and all incidentals necessary to place the pipe into service except where such items are shown to be paid for under a separate Pay Item.

D. HDPE Water Main

HDPE water mains shall be paid for at the unit price per linear foot for each diameter pipe installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, entry/exit pits, installation of pipe, tracer wire, warning tape, mechanical joint adapters, protection of existing utilities, connections to existing water mains, fusion process materials and equipment, directional drilling materials and equipment, tracking system, assembling, welding, supporting, stringing, pulling, pigging, cleaning, sampling taps, temporary blow-offs, flushing, chlorine for disinfection, disinfection, backfilling, backfill materials, disposal of unsuitable backfill material, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, and restoration, and all incidentals necessary to place the pipe into service except where such items are shown to be paid for under a separate Pay Item.

E. Ductile Iron Fittings

Ductile iron fittings are considered subsidiary to the water line in which they are used and are not measured for separate payment as outlined in the manufacturers’ catalogues and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of fittings, joints and jointing materials, anchoring, warning tape, polyethylene encasement, protection of existing utilities, flushing, chlorine for disinfection, disinfection, backfilling, backfill materials, disposal of unsuitable backfill material, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration, all other related and necessary materials, work and equipment required to install a complete and operable pipeline fitting. This Item includes, but is not limited to, wyes, tees, bends, crosses, sleeves, plugs and caps, couplings, and reducers.

F. Restrained Joints

Restrained joints are considered incidental to the pipe installation and are not measured for separate payment and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of the restraint device, polyethylene encasement, protection of existing utilities, backfilling, backfill material, disposal of unsuitable backfill materials, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to install the restrained joint.

G. Gate Valves

Gate valves shall be paid for at the unit price per each size gate valve and box assembly installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of the gate valves (including valve box), concrete pad or collar, valve identification disc, valve marker, valve tag, polyethylene encasement, protection of existing utilities, chlorine for disinfection, disinfection, backfilling, backfill material, disposal of unsuitable backfill materials, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to install the gate valve and place it in service.
H. Butterfly Valves

Butterfly valves shall be paid for at the unit price per each size butterfly valve and box assembly installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of the butterfly valves including valve box, concrete pad or collar, valve identification disc, valve marker, valve tag, polyethylene encasement, protection of existing utilities, chlorine for disinfection, disinfection, backfilling, backfill material, disposal of unsuitable backfill materials, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration and all work and materials necessary to install the butterfly valve and place it in service.

I. Tapping Sleeve and Valve Assembly

Tapping sleeve and valves assemblies shall be paid for at the unit price per each size tapping sleeve and valve assembly installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of tapping sleeves and valve assemblies including valve box, concrete pad or collar, valve marker, valve tag, polyethylene encasement, protection of existing utilities, tapping the potable water main, chlorine for disinfection, disinfection, sampling points, backfilling, backfill material, disposal of unsuitable backfill materials, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration, and all work and necessary hardware to install the tapping sleeve assembly and valve and place it in service.

J. Fire Hydrant Assembly

Fire hydrant assemblies shall be paid for at the unit price per each hydrant installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of the fire hydrant assemblies (all configurations), vertical extensions, tapping sleeve, valve, hydrant lead piping, joint connections, fittings, tees, restraints, crushed stone drain, polyethylene encasement, protection of existing utilities, valve box, concrete pad or collar, valve identification disc, valve marker, valve tag, chlorine for disinfection, disinfection, backfilling, backfill material, disposal of unsuitable backfill materials, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to install the fire hydrant assembly and place it in service.

K. Water Service Line

Water service lines shall be paid for at the unit price per linear feet (meters) of the size service line installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of water service line, tracer wire, tapping saddle, sleeve, corporation stops, fittings, curb stops, casing pipe, plugging abandoned water service connection, removal of abandoned water service line, protection of existing utilities, locating and connection to existing or new water main, chlorine for disinfection, disinfection, sampling points, backfilling, backfill materials, disposal of unsuitable backfill materials, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to place the water service line into service. Water meter and box shall be paid for under a separate Pay Item.

L. Water Meter and Box

Water meters shall be paid for at the unit price per each size water meter installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of the meter and box, adjustment to final grade, fittings, protection of existing utilities, chlorine for disinfection, disinfection, backfilling, backfill materials, disposal of unsuitable backfill material, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to place the meter into service except where such items are to be paid for under a separate Pay Item.

M. Backflow Preventer

Backflow prevention devices shall be paid for at the unit price per each type backflow preventer installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of the backflow preventer, concrete vault, adjustment to final grade, testing and certification,
fitting, tees, restraints, protection of existing utilities, chlorine for disinfection, disinfection, backfilling, backfill materials, disposal of unsuitable backfill material, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to place the meter into service except where such items are to be paid for under a separate Pay Item.

N. Air Release Valve Assembly

Air release valve assemblies shall be paid for at the unit price per each size and type of air release valve assembly installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of the air release assembly, tapping saddle, isolation valve, reducers, piping, restraints, fittings, tracer wire, concrete manhole or vault, ring and cover, protection of existing utilities, chlorine for disinfection, disinfection, backfilling, backfill materials, disposal of unsuitable backfill material, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to place the air release assembly into service.

O. Pressure Reducing / Sustaining Valve

Pressure reducing / sustaining valve shall be paid for at the unit price per each size and type of pressure reducing / sustaining valve installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of the pressure reducing / sustaining valve, reducers, piping, restraints, fittings, tracer wire, concrete manhole or vault, ring and cover, tracer wire, protection of existing utilities, chlorine for disinfection, disinfection, backfilling, backfill materials, disposal of unsuitable backfill material, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to place the pressure reducing / sustaining valve into service.

P. Blow-Off Assembly

Blow-off assemblies shall be paid for at the unit price per each blow-off assembly installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of the blow-off assembly, valves, valve boxes, concrete pad or collar, piping, restraints, fittings, tracer wire, protection of existing utilities, chlorine for disinfection, disinfection, backfilling, backfill materials, disposal of unsuitable backfill material, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to place the blow-off assembly into service.

Q. Steel Casing

Steel casing pipe shall be paid for at the unit price per linear foot according to the diameter and thickness of the steel casing installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, protection of existing utilities, steel casing pipe, skid, steel straps, coatings, casing spacers, end seals, boring and jacking pits, backfilling, backfill materials, disposal of unsuitable backfill material, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to install the steel casing except where such items are shown to be paid for under a separate Item. The carrier pipe shall be paid from another applicable Pay Item.

R. Relocation of Existing Air Release Valve

Relocation of air release valves shall be paid for at the unit price per each air release valve assembly relocated and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheet and shoring, removal of existing air release valve assembly, installation at another location, piping, restraints, tracer wire, fittings, adjustment to final grade, polyethylene encasement, protection of existing utilities, chlorine for disinfection, disinfection backfilling, backfill material, disposal of unsuitable backfill materials, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration and all work necessary to locate, remove and relocate the air release valve except where such items are shown to be paid for under a separate Pay Item.

S. Relocation of Existing Fire Hydrant Assembly

Relocation of fire hydrants shall be paid for at the unit price per each hydrant assembly relocated and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheet and shoring, removal of
existing fire hydrant assembly, installation at another location, vertical extensions, hydrant lead piping, joint connections, fittings, tees, restraints, crushed stone drain, polyethylene encasement, valve box, concrete pad or collar, valve identification disc, valve marker, adjustment to final grade, protection of existing utilities, chlorine for disinfection, disinfection, backfilling, backfill material, disposal of unsuitable backfill materials, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration, and all work necessary to locate, remove and relocate the hydrant.

T. Relocation of Existing Backflow Prevention Devices

Relocation of backflow prevention devices shall be paid for at the unit price per each backflow preventer relocated and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheet and shoring, removal of existing backflow preventer, installation at another location, adjustment to final grade, testing and certification, fittings, tees, restraints, protection of existing utilities, chlorine for disinfection, disinfection, backfilling, backfill material, disposal of unsuitable backfill materials, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration, and all work necessary to locate, remove and relocate the backflow prevention device. The service line from the main to the relocated backflow preventer shall be paid for under a separate Pay Item.

U. Relocation of Water Meter and Box

Relocation of existing water meter and boxes shall be paid for at the unit price of each water meter and box relocated and shall cover the cost of all materials, transportation, labor, equipment, excavation, sheeting and shoring, removal of existing water meter and box, installation at another location, adjustment to final grade, protection of existing utilities, chlorine for disinfection, disinfection, backfilling, backfill material, disposal of unsuitable backfill materials, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to relocate the water meter and box except where such items are shown to be paid for under a separate Item. The new service line from the main to the relocated meter shall be paid for under a separate Pay Item.

V. Adjustment of Existing Water Service Line

Adjustment of existing water service lines shall be paid in accordance with Section 611, for at the unit price per linear foot of service line adjusted and shall cover the cost of all materials, transportation, labor, equipment, excavation, sheeting and shoring, adjustment of service line, tracer wire and splices, chlorine for disinfection, disinfection, backfilling, backfill material, disposal of unsuitable backfill materials, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to adjust the service line except where such items are shown to be paid for under a separate Pay Item.

W. Adjustment of Existing Water Valve Boxes to Grade

Adjustment of existing valve boxes shall be paid for in accordance with Section 611, at the unit price per each valve box adjusted to final grade and shall cover the cost of all materials, transportation, labor, equipment, excavation, sheeting and shoring, valve case and lid, trench adapter and operating nut extensions/reductions, tracer wire and splices, tracer wire riser and threaded plug, concrete pad, valve identification disc, backfilling, backfill material, disposal of unsuitable backfill materials, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to adjust the valve box.

X. Adjustment of Blow-off Assembly

Adjustment of existing blow-off assemblies shall be paid for at the unit price per each blow-off adjusted to final grade and shall cover the cost of all materials, transportation, labor, equipment, excavation, sheeting and shoring, valve case and lid, trench adapter and operating nut extensions/reductions, tracer wire and splices, tracer wire riser and threaded plug, piping, concrete pad or collar, valve identification disc, chlorine for disinfection, disinfection, backfilling, backfill material, disposal of unsuitable backfill materials, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to adjust the blow-off assembly.

Y. Adjustment of Existing Water Meter Boxes to Grade
Section 670 – Water Distribution System

Adjustment of existing meter boxes shall be paid for at the unit price per each meter box adjusted to finished grade and shall cover the cost of all materials, transportation, labor, equipment, excavation, sheeting and shoring, adjustment of water meter box to final grade, protection of existing utilities, backfilling, backfill material, disposal of unsuitable backfill materials, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to adjust the water meter box.

Z. Adjustment of Backflow Preventer

Adjustment of existing backflow preventers shall be paid for at the unit price per each backflow preventer adjusted to finished grade and shall cover the cost of all materials, transportation, labor, equipment, excavation, sheeting and shoring, adjustment of backflow preventer to final grade, adjustment of backflow preventer vault to final grade, protection of existing utilities, backfilling, backfill material, disposal of unsuitable backfill materials, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to adjust the water meter box.

AA. Adjustment of Existing Fire Hydrant Assembly to Grade

Adjustment of existing fire hydrants shall be paid for at the unit price per each hydrant adjusted to finished grade and shall cover the cost of all materials, transportation, labor, equipment, excavation, sheeting and shoring, adjustment of hydrant, protection of existing utilities, chlorine for disinfection, disinfection, backfilling, backfill material, disposal of unsuitable backfill materials, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to adjust the hydrant.

BB. Removal of Water Valve and Box

Removal of water valves shall be paid for at the unit price per each valve removed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheet and shoring, removal of existing water valve and box, protection of existing utilities, backfilling, backfill material, disposal of unsuitable backfill materials, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration, storage and delivery of removed valves identified to be salvaged, and all work necessary to remove the valve and box.

CC. Removal of Water Meter and Box

Removal of water meters shall be paid for at the unit price per each meter removed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheet and shoring, removal of existing water meter and box, protection of existing utilities, backfilling, backfill material, disposal of unsuitable backfill materials, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration, storage and delivery of removed meters and boxes identified to be salvaged, and all work necessary to remove the meter.

DD. Removal of Fire Hydrant Assembly

Removal of fire hydrant assemblies shall be paid for at the unit price per each hydrant assembly removed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheet and shoring, removal of existing fire hydrant assembly, protection of existing utilities, backfilling, backfill material, disposal of unsuitable backfill materials, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration, storage and delivery of removed hydrants identified to be salvaged, and all work necessary to remove the hydrant.

EE. Removal of Air Release Valve

Removal of air release valves shall be paid for at the unit price per each air release valve removed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, removal of air release valve assemblies, piping, concrete manholes or vaults, and fabricated enclosures, backfilling, backfill materials, disposal of unsuitable backfill materials, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration, storage and delivery of air release valves identified to be salvaged, and all work necessary to remove the air release valve.

FF. Removal of Backflow Prevention Devices
Section 670 – Water Distribution System

Removal of backflow prevention devices shall be paid for at the unit price per each backflow preventer removed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheet and shoring, removal of existing backflow preventer and vault, protection of existing utilities, backfilling, backfill material, disposal of unsuitable backfill materials, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration, storage and delivery of removed backflow preventers identified to be salvaged, and all work necessary to remove the backflow preventers.

GG. Concrete Thrust Blocks

Concrete thrust blocks shall be paid for at the unit price per cubic yard of concrete complete in place as indicated in Section 500 and shall cover the cost of all materials, transportation, labor, equipment, excavation, sheeting and shoring, concrete, forming, reinforcement, protection of existing utilities, backfilling, backfill material, disposal of unsuitable backfill materials, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to install a complete thrust block. When Concrete Thrust Blocks is not shown as a pay item, include the cost of the work in the bid price for the appropriate item.

HH. Concrete Thrust Collars

Concrete thrust collars shall be paid for at the unit price per each size of thrust collar and shall cover the cost of all materials, transportation, labor, equipment, excavation, sheeting and shoring, reinforced concrete thrust collars, retainer glands, reinforcement, protection of existing utilities, backfilling, backfill material, disposal of unsuitable backfill materials, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to install a complete thrust collar. When Concrete Thrust Collar is not shown as a pay item, include the cost of the work in the bid price for the appropriate item.

II. Removal of Water Main

Removal of water mains shall be paid for at the unit price per linear foot of the size of water main to be removed in accordance with Section 610 and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, protection of existing utilities, backfilling, backfill material, disposal of unsuitable backfill materials, tamping, testing, densities, dewatering, trench stabilization, clean-up, bypass pumping (as required), restoration, and all work and materials necessary to locate, remove and dispose of the pipe and associated appurtenances. Unless indicated for removal in a separate Pay Item, appurtenances to be removed shall include but not be limited to fittings, isolation valves, air release valves, valve boxes, blow-offs, steel casings, casing spacers, fire hydrant assemblies, water service lines, water meter boxes, thrust blocks, and concrete. All such surplus items shall become the property of the Contractor unless specified to be salvaged by the Utility Owner.

JJ. Cut and Plug Existing Water Main

Cutting and plugging of existing water mains shall be paid for at the unit price per each installation and shall cover all materials, transportation, labor, equipment, excavation, sheeting and shoring, protection of existing utilities, backfilling, backfill material, disposal of unsuitable backfill materials, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to cut and plug existing water mains, except where such items are shown to be paid for under a separate Pay Item.

KK. Line Stops

Line stops shall be paid for at the unit price per each size line stop installed and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of the line stop assemblies, valves, valve boxes, fittings, restraints, protection of existing utilities, chlorine for disinfection, disinfection, sampling points, backfilling, backfill material, disposal of unsuitable backfill materials, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to install the gate valve and place it in service.

LL. Flowable Fill

Flowable fill shall be paid for at the unit price per cubic yard of flowable fill complete in place as indicated in Section 600 and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting,
and shoring, flushing, plugging air release valves and service connections, installation of flowable fill, protection of existing utilities, backfilling, backfill material, disposal of unsuitable backfill materials, tamping, testing, densities, utility crossings, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to install the gate valve and place it in service. When flowable fill is not shown as a pay item, include the cost of the work in the bid price for the appropriate item.

MM. Insertion Valve

Insertion valves shall be paid for at the unit price per each size valve inserted and shall cover the cost for all materials, transportation, labor, equipment, excavation, sheeting and shoring, installation of the valve, valve boxes, fittings, restraints, concrete pad or collar, valve identification disc, valve marker, polyethylene encasement, protection of existing utilities, chlorine for disinfection, disinfection, sampling points, backfilling, backfill material, disposal of unsuitable backfill materials, tamping, testing, densities, dewatering, trench stabilization, clean-up, restoration, and all work and materials necessary to install the insertion valve and place it in service.

NN. Three-Dimensional (3D) Survey

Three-dimensional survey cost will be included in the overall pipe measurement and no separate payment for this work will be made, and it shall cover the costs for all non-destructive methods of locating installed utilities and associated electronic deliverables per Utility Owner specifications.

670.5.01 Adjustments

General Provisions 101 through 150.
APPENDIX TO SPECIAL PROVISIONS 670

CITY OF ATLANTA

DEPARTMENT OF WATERSHED MANAGEMENT

STANDARD SPECIFICATIONS

PI NO: 0012586

PONCE DE LEON AVENUE COMPLETE STREET RETROFIT AND BELTLINE CONNECTION
STANDARD SPECIFICATION INDEX

1. Special Conditions ... SC-1
2. Pipeline Contractor Minimum Qualifications Forms QC-1

TECHNICAL SPECIFICATIONS

DIVISION 1 – GENERAL REQUIREMENTS

3. Coordination ... 01040-1
4. Construction Staking .. 01055-1
5. Construction Photography ... 01320-1
6. Transportation Handling .. 01610-1

DIVISION 2 – SITE WORK

7. Sheetling, Shoring and Bracing ... 02150-1
8. Trench Excavation and Backfill ... 02225-1
9. Polyethylene Encasement of Ductile Iron Pipe 02616-1
10. Hydrants ... 02645-1
11. Manhole Frame and Cover and Valve Cover Adjustment 02647-1
12. Water Mains and Accessories .. 02665-1
13. Service Connections .. 02668-1
14. Disinfection of Water Mains ... 02675-1

DIVISION 3 – CONCRETE

15. Concrete and Reinforcing Steel ... 03301-1

DIVISION 4 – MASONRY

16. Masonry ... 04000-1

DIVISION 15 - MECHANICAL

17. Valves and Appurtenances .. 15100-1
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SC-1</th>
<th>PRECONSTRUCTION SURVEY</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC-2</td>
<td>SAFETY AND HEALTH</td>
<td>1</td>
</tr>
<tr>
<td>SC-3</td>
<td>LAYOUT OF THE WORK AND SURVEYS</td>
<td>2</td>
</tr>
<tr>
<td>SC-4</td>
<td>DETECTION OF MOVEMENT</td>
<td>2</td>
</tr>
<tr>
<td>SC-5</td>
<td>EXISTING UTILITIES</td>
<td>2</td>
</tr>
<tr>
<td>SC-6</td>
<td>WORK IN FLOOD PLAIN AREAS</td>
<td>3</td>
</tr>
<tr>
<td>SC-7</td>
<td>RIGHT TO OPERATE</td>
<td>3</td>
</tr>
<tr>
<td>SC-8</td>
<td>CONCRETE POUR CARD</td>
<td>3</td>
</tr>
<tr>
<td>SC-9</td>
<td>TIE-INS OR MODIFICATIONS TO EXISTING SYSTEMS</td>
<td>3</td>
</tr>
</tbody>
</table>
SC-1 PRECONSTRUCTION SURVEY

Contractor is expressly advised that the protection of buildings, structures, bridges, and related work adjacent and in the vicinity of its operations, wherever they may be, is solely its responsibility. Conditional inspection of buildings, bridges or other structures in the immediate vicinity of any blasting operations shall be performed by and be the responsibility of the Contractor. The inspection corridor shall extend within a 500-foot radius of any proposed blasting operations. The Contractor shall retain an independent consultant, specializing in preconstruction surveys, to conduct the required inspections.

The Contractor shall have the independent consultant, before the Contractor starts blasting operations, make an examination of the interior and exterior of the adjacent structures, buildings, facilities, etc., and record by notes, measurements, photographs, etc., conditions which might be aggravated by blasting or other operations. Repairs or replacement of all conditions disturbed by the construction shall be made to the satisfaction of the owners or agents of adjacent buildings, structures, facilities, etc., and to the satisfaction of the Engineer. This does not preclude conforming to the requirements of the insurance underwriters. Two copies of surveys, photographs, videos, reports, etc., shall be given to the Engineer.

Prior to the beginning of any excavations the Contractor shall advise the Engineer of all buildings or structures on which it intends to perform work or which performance of the project work will affect. The preconstruction survey will be performed by a firm specializing in performing such surveys. The qualifications and experience of the proposed consultant shall be submitted to the Engineer for approval prior to assignment of the Work.

The Contractor’s attention is directed to Section 01320 of the Technical Specifications.

SC-2 SAFETY AND HEALTH

The Contractor shall comply with all applicable health and safety standards and provisions required by the City of Atlanta, Fulton County, State of Georgia, and the Federal Government and its regulatory agencies. The Contractor shall maintain an accurate record of all cases of death, occupational diseases, and injury requiring medical attention or causing loss of time from work arising out of and in the course of employment on work under the Contract.

This project involves work in and around operating combined and sanitary sewer systems. In these areas, the potential exists for toxic and/or explosive gases. The Contractor shall exercise caution when entering any confined space. The atmosphere shall be tested for oxygen levels and potential explosive conditions before entry. Contractor alone shall be responsible for the safety, efficiency, and adequacy of his plant, appliances, and methods, and for any damage, which may result from their failure or their improper construction, maintenance, or operation.

Emergency telephone numbers (fire, medical and police) shall be posted at the Contractor’s telephone. The location of the Contractor’s telephone shall be known to all.

Accidents shall be reported immediately to the Engineer.
All accidents shall be documented and a full detailed report submitted to the Engineer after each accident.

SC-3 LAYOUT OF THE WORK AND SURVEYS

The Engineer will establish an initial base line and bench mark. The Contractor shall employ, at his own expense, a Surveyor registered in the State of Georgia who shall stake out the various structures and other parts of the work, establish levels, and erect permanent batter boards. From time to time, the above-mentioned surveyor shall verify by instrument all reference marks, and the Contractor shall be responsible for the accuracy of all line and levels and of the work as built in accordance therewith.

The Contractor shall exercise proper care and caution to verify the grades and figures given him before proceeding with the work, and shall be responsible for any errors, damage, or defective work caused by his failure to exercise such care and caution. He shall promptly notify the Engineer of any errors or discrepancies he may discover in order that the proper corrections may be made.

Engineer may check line and grade at such times as he determines such checks are necessary to verify conformance of the Contractor's work. Such a check shall not be considered as approval of the Contractor's work and shall not relieve the Contractor of responsibility for accurate construction of the entire work. The Contractor shall furnish the services of a person to help the Engineer in checking lines and grades. All stakes or marks required to establish the line and grades required for the completion of the Work shall be the responsibility of the Contractor.

SC-4 DETECTION OF MOVEMENT

In order to detect any movement of buildings or structures that may be affected by his work, Contractor shall, prior to excavation, establish a system of vertical and horizontal control points on or about such buildings or structures, tied to bench marks and indices sufficiently remote to not be moved by his operations. A plan of this system shall be submitted to the Engineer for review. Readings shall be taken of these points and permanently recorded prior to the start of excavation. The Owner will not assume any responsibility for alleged damages to any building or structure arising from the work performed under this Contract.

SC-5 EXISTING UTILITIES

SC-5.1 Verification of the Location of the Existing Utilities

Representations of existing utilities, facilities, and structures in the Contract Documents are based upon the best available information. The Owner and the Designer will not be responsible for the completeness or accuracy thereof nor for any deductions, interpretations, or conclusions drawn therefrom. The Contractor shall verify to his own satisfaction by test pit or other means, the actual location of existing utilities prior to construction in their vicinity.

Should the Contractor in the course of his operations encounter any underground utilities the presence of which was not previously known, or a different type than shown, he shall immediately notify the Engineer and take all necessary precautions to protect the utility and maintain continuance of service until said utilities can be adjusted by the appropriate owners.

Contractor will notify all public utility corporations, jurisdictional agencies, or other owners to make all necessary adjustments to public utility fixtures and appurtenances within or adjacent to the limits of construction. Delays and additional cost resulting from a failure of the Contractor to notify the utility or to
provide adequate notice to the utility shall be at no additional cost to the Owner and in such case, no extension of time will be granted for delays caused by utility adjustments.

Damage caused to utilities either directly or indirectly by the Contractor shall be repaired and the facilities restored to their original condition to the satisfaction of the Engineer and the utility owner, at no additional cost to the Owner.

SC-5.2 Work in Vicinity of Existing Utilities

At least three (3) working days prior to starting work in the vicinity of utility structures and appurtenances, Contractor shall notify Engineer and appropriate utility companies and jurisdictional agencies. Contractor shall support and protect all utility structures and appurtenances in accordance with the requirements of the Contract Documents and the utility companies, and shall take any other steps necessary to protect the structures from disturbance or damage.

SC-5.3 Access to Utilities Facilities

The Contractor shall at all times permit free and clear access to the various affected facilities by personnel of the utility owners or operators who are working within the limits of work for the purpose of inspection, maintenance, or providing additional service requirements, and the construction of new facilities. When personnel of the utility owners or operators are working within the limits of work to be performed by Contractor, the Contractor will not be relieved of his responsibility for the maintenance and protection of such facilities.

SC-6 WORK IN FLOOD PLAIN AREAS

The Contractor shall comply with all regulations in the Fulton County Zoning Resolution, Article IV, Paragraph 4.24 Flood Plain Management.

SC-7 RIGHT TO OPERATE

As soon as any portion of the Work is completed, accepted by the Engineer and is ready for use, the Owner shall have the right to operate such portion upon written notice to the Contractor by the Owner. The Owner shall also issue a certificate of completion for that portion of the work. Guarantee period on that portion of work will begin upon issuance of certificate of completion for that portion.

Testing of equipment and appurtenance and training of Owner’s personnel as specified shall not constitute operation.

The execution of the bonds shall constitute the consent of the surety.

The Contractor shall provide an endorsement to his insurance permitting occupancy of the structures and use of equipment during the remaining period of construction.

SC-8 CONCRETE POUR CARD

An approved concrete pour card must be obtained by the Contractor prior to the placement of concrete. The card shall be as provided to the Contractor by the Engineer. The pour card shall be completed by the Contractor and approved by the Engineer before concrete is placed.

SC-9 TIE-INS OR MODIFICATIONS TO EXISTING SYSTEMS

PI NO: 0012586
PONCE DE LEON AVENUE COMPLETE STREET RETROFIT AND BELTLINE CONNECTION

SC-3 Special Conditions
Anytime the Contractor ties into or modifies an existing system, a detailed work plan shall be required. Submittal of this work plan must be a minimum of 30 days in advance of commencement of the subject work. This work plan shall include a detailed description of the work, a step-by-step plan of the modification or tie-in, a schedule, a detailed list of materials and equipment required, demonstrated communications capacity, and a listing of any gates or valves, which must be operated. Working drawings shall be submitted for any permanent or temporary structural modifications. A temporary safety plan covering the period of the work, and a listing of contingency plans and supplies, including but not limited to spill prevention planning and spill containment kits, shall be required.

A coordination meeting with the Owner, the Contractor, the Engineer and the Designer must be held at least seven (7) days prior to the commencement of the modification or tie-in. The day before the commencement of the modification or tie-in, a final coordination shall be held giving final detailed work assignments to all parties involved.

The Owner and the Engineer have the right to require, at no additional cost to the Owner, stand-by equipment on any item(s) deemed critical enough to delay the work. The Contractor shall have available stand-by personnel to supplement the committed forces should problems arise. The Contractor is responsible for meeting all OSHA standards including entrance and exit safety, confined space entry, fall protection, scaffolding, rigging, etc.

++ END OF SPECIAL CONDITIONS ++

PI NO: 0012586
PONCE DE LEON AVENUE COMPLETE STREET RETROFIT AND BELTLINE CONNECTION
SC-4 Special Conditions
GEORGIA UTILITY CONTRACTOR’S
LICENSE CERTIFICATION

Contractor’s Name: ________________________________

Utility Contractor’s License Number: ________________

Expiration Date of License: ________________________
STATEMENT OF PIPELINE CONTRACTOR’S MINIMUM QUALIFICATIONS

This Statement is to accompany bids submitted for this project. Pipeline contractor must meet the minimum qualification criteria set forth under items 5, 7, 8, 9, 10, 11, and 12 of this section, must provide the organization chart as set forth under item 6 of this section and must complete the project experience forms for qualifying projects to be deemed a "Responsible and Responsive Bidder".

1. NAME OF BIDDER: ___

2. BUSINESS ADDRESS: ___

3. TELEPHONE NUMBER: ___

4. OFFICIAL REPRESENTATIVE AND TITLE: ________________________________

5. Using the forms provided in this Section, list previously completed or current projects which are similar in scope and complexity to this project which were completed or assigned to your firm or joint venture.

 a. Pipeline contractor must have successfully managed and completed at least one water distribution system contract in the past five years. The contract must have consisted of the installation of ductile iron water mains at least 8-inches in diameter and 1,000 feet in length, installation of hydrants and service connections and pavement restoration.

 b. (Not Used)

6. Provide the following information for the organization proposed for this project:

 a. Organizational chart. Organizational chart shall include the names of the following personnel:

 (1) Project Manager
 (2) Project Superintendent
 (3) Project Safety Coordinator
 (4) Public Information Officer
 (5) Traffic Control Manager

 b. The above indicated individuals shall not be changed without written approval of the Engineer.

 c. Indicate the participation by the various members in the organization, as shown on the organizational chart; in the management; and in the division of work. If a joint venture, indicate percent of project cost to be performed by each joint venture member.
d. Each of the five personnel positions indicated in Paragraph 6 a. above shall be filled by a separate individual.

7. Using the forms provided in this Section, provide information for key project personnel including Project Manager, Project Superintendent, Project Safety Coordinator, Public Information Officer and Traffic Control Manager.

a. Project Manager must have successfully managed and completed at least one water distribution system contract in the past five years. The contract must have consisted of the installation of ductile iron water mains at least 12-inches in diameter and 1,000 feet in length, installation of hydrants and service connections and pavement restoration.

b. Project Superintendent must have successfully managed and completed at least two water distribution system contracts in the past five years. The contract must have consisted of the installation of ductile iron water mains at least 12-inches in diameter and 1,000 feet in length, installation of hydrants and service connections and pavement restoration.

c. Project Safety Coordinator, Public Information Officer and Traffic Control Manager must have each worked on at least one project involving installation of water mains and/or sanitary sewers.

d. Project Safety Coordinator must also meet the following requirements:

 (1) Four-year Bachelor’s degree and five years of construction loss control or construction safety experience; OR

 (2) Ten years of construction loss control or construction safety experience, AND

 (3) Current certifications as listed below in (a), (b), and (c):

 (a) OSHA 510 or equivalent 30 hours of construction safety training.

 • Trenching and Excavation (Standards – 29 CFR – 1926.651)

 • Confined space Entry (Standards – 29 CFR – 1910.146 App. E), AND

 (b) Traffic Control/flagging (Certified GDOT flagger), AND

 (c) First Aid/CPR/AED (Standards – 29 CFR – 1910.266 (App. B))

e. Public Information Officer (PIO) must also meet the following requirements:

 (1) PIO must have had the responsibilities of receiving, logging, tracking, responding and resolving customer/citizen complaints and claims, providing notices to and personal interaction with affected customers/citizens regarding project impact and projected work schedules of the Contractor, reviewing project schedules and “look-ahead” to determine projected areas of impact from the Work.

 (2) PIO must have a minimum of one year of experience in performing this type of work on similar projects.
8. The Contractor must have an established Safety Program that as a minimum includes those items as listed on the attachment entitled “CONTRACTOR SAFETY RECORD FORM”.

9. The Contractor’s Worker’s Compensation Rating (EMR - Experience Modification Rate) must not exceed an average of 1.0 over the last three (3) applicable years.
 a. Contractor’s Worker’s Compensation Rating (EMR - Experience Modification Rate): ___

10. The Contractor’s workplace injury and illness incidence rates must not exceed the rates published by the U.S. Department of Labor, Bureau of Labor Statistics in October, 2012. (i.e. Total Recordable Case (TRC) Rate of 3.9 and Days Away From Work (DAFW) Rate of 1.4 per NAICS 23711 definition and calculation).
 a. Contractor’s Total Recordable Incidence Rate: ______________
 b. Contractor’s Days Away From Work Incidence Rate: ______________

11. If there have been any fatalities during the last five (5) years on any projects performed by the Contractor or on any work performed under the direct supervision of a proposed Project Manager and the Contractor or proposed Project Manager was cited by OSHA for a “Willful” Violation in performing the work in which the fatality occurred, the Contractor will be disqualified based on the City’s review. The Contractor may also be disqualified in the event that a Recordable Incident occurred due to the same condition that existed when a previous fatality occurred and resulted in an OSHA citation or failure to implement a corrective action plan.
 a. Fatalities during the last five years where Contractor was cited by OSHA for “Willful” Violation: __________________
 b. Fatalities during the last five years where the proposed Project Manager was cited by OSHA for “Willful” Violation: _______________

12. Have there been any incidents during the last five (5) years on water or sewer projects performed by the Contractor or on any work performed under the direct supervision of a proposed Project Manager that resulted in failing to meet NPDES Discharge Permit requirements due to the actions of the Contractor or proposed Project Manager or Project Superintendent?
 Yes___________ No______

The previous statements and attachments are true, correct, and complete to the best of my knowledge.

Date: ______

Firm Name: __

By: ___________________________
STATEMENT OF PIPELINE CONTRACTOR’S QUALIFICATIONS

COMPANY PROJECT EXPERIENCE

<table>
<thead>
<tr>
<th>Project Name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Location</td>
<td></td>
</tr>
<tr>
<td>Contractor’s Project Manager</td>
<td></td>
</tr>
<tr>
<td>Contractor’s Project Superintendent</td>
<td></td>
</tr>
<tr>
<td>Owner’s Representative: Name and Phone Number</td>
<td></td>
</tr>
<tr>
<td>Design Engineer’s Representative: Name and Phone Number</td>
<td></td>
</tr>
<tr>
<td>Water Mains, Size & LF</td>
<td></td>
</tr>
<tr>
<td>Initial Contract Amount</td>
<td>$</td>
</tr>
<tr>
<td>Final Contract Amount</td>
<td>$</td>
</tr>
<tr>
<td>Reason for Cost Increase, if any</td>
<td></td>
</tr>
<tr>
<td>Project Duration</td>
<td>Date Started: Date Completed:</td>
</tr>
<tr>
<td>Was Project Completed on Time?</td>
<td></td>
</tr>
<tr>
<td>If not Completed on Time, Why?</td>
<td></td>
</tr>
<tr>
<td>Description of Major Project Components</td>
<td></td>
</tr>
</tbody>
</table>
Statement of Pipeline Contractor’s Qualifications

Project Manager’s Experience

NAME:

<table>
<thead>
<tr>
<th>Project Name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Location</td>
<td></td>
</tr>
<tr>
<td>Contractor</td>
<td></td>
</tr>
<tr>
<td>Contractor’s Project Manager</td>
<td></td>
</tr>
<tr>
<td>Owner’s Representative: Name and Phone Number</td>
<td></td>
</tr>
<tr>
<td>Design Engineer’s Representative: Name and Phone Number</td>
<td></td>
</tr>
<tr>
<td>Water Mains, Size & LF</td>
<td></td>
</tr>
<tr>
<td>Initial Contract Amount</td>
<td>$</td>
</tr>
<tr>
<td>Final Contract Amount</td>
<td>$</td>
</tr>
<tr>
<td>Reason for Cost increase, if any</td>
<td></td>
</tr>
<tr>
<td>Project Duration</td>
<td>Date Started: Date Completed:</td>
</tr>
<tr>
<td>Was Project Completed on Time?</td>
<td>If not Completed on Time, Why?</td>
</tr>
<tr>
<td>Description of Major Project Components</td>
<td></td>
</tr>
</tbody>
</table>
STATEMENT OF PIPELINE CONTRACTOR’S QUALIFICATIONS

PROJECT SUPERINTENDENT’S EXPERIENCE

NAME:

<table>
<thead>
<tr>
<th>Project Name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Location</td>
<td></td>
</tr>
<tr>
<td>Contractor</td>
<td></td>
</tr>
<tr>
<td>Contractor’s Project Manager</td>
<td></td>
</tr>
<tr>
<td>Owner’s Representative: Name and Phone Number</td>
<td></td>
</tr>
<tr>
<td>Design Engineer Representative: Name and Phone Number</td>
<td></td>
</tr>
<tr>
<td>Water Mains, Size & LF</td>
<td></td>
</tr>
<tr>
<td>Initial Contract Amount</td>
<td>$</td>
</tr>
<tr>
<td>Final Contract Amount</td>
<td>$</td>
</tr>
<tr>
<td>Reason for Cost Increase, if any</td>
<td></td>
</tr>
<tr>
<td>Project Duration</td>
<td>Date Started:</td>
</tr>
<tr>
<td>Was Project Completed on Time?</td>
<td>Date Completed:</td>
</tr>
<tr>
<td>If not Completed on Time, Why?</td>
<td></td>
</tr>
<tr>
<td>Description of Major Project Components</td>
<td></td>
</tr>
</tbody>
</table>
STATEMENT OF PIPELINE CONTRACTOR’S QUALIFICATIONS

SAFETY COORDINATOR’S EXPERIENCE

NAME: ______________________________

<table>
<thead>
<tr>
<th>Project Name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Location</td>
<td></td>
</tr>
<tr>
<td>Contractor</td>
<td></td>
</tr>
<tr>
<td>Contractor’s Project Manager</td>
<td></td>
</tr>
<tr>
<td>Owner’s Representative: Name and Phone Number</td>
<td></td>
</tr>
<tr>
<td>Design Engineer’s Representative: Name and Phone Number</td>
<td></td>
</tr>
<tr>
<td>Water Main/Sewer, Size & LF</td>
<td></td>
</tr>
<tr>
<td>Initial Contract Amount $</td>
<td></td>
</tr>
<tr>
<td>Final Contract Amount $</td>
<td></td>
</tr>
<tr>
<td>Project Duration</td>
<td></td>
</tr>
<tr>
<td>Date Started:</td>
<td></td>
</tr>
<tr>
<td>Date Completed:</td>
<td></td>
</tr>
<tr>
<td>Description of Project Safety Activities</td>
<td></td>
</tr>
</tbody>
</table>

Submit Resume
STATEMENT OF PIPELINE CONTRACTOR’S QUALIFICATIONS

PUBLIC INFORMATION OFFICER’S EXPERIENCE

NAME:

<table>
<thead>
<tr>
<th>Project Name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Location</td>
<td></td>
</tr>
<tr>
<td>Contractor</td>
<td></td>
</tr>
<tr>
<td>Contractor’s Project Manager</td>
<td></td>
</tr>
<tr>
<td>Owner’s Representative: Name and Phone Number</td>
<td></td>
</tr>
<tr>
<td>Design Engineer’s Representative: Name and Phone Number</td>
<td></td>
</tr>
<tr>
<td>Water Main/Sewer, Size & LF</td>
<td></td>
</tr>
<tr>
<td>Initial Contract Amount</td>
<td>$</td>
</tr>
<tr>
<td>Final Contract Amount</td>
<td>$</td>
</tr>
<tr>
<td>Project Duration</td>
<td></td>
</tr>
<tr>
<td>Date Started:</td>
<td></td>
</tr>
<tr>
<td>Date Completed:</td>
<td></td>
</tr>
<tr>
<td>Description of Project Public Information Activities</td>
<td></td>
</tr>
<tr>
<td>NAME:</td>
<td></td>
</tr>
<tr>
<td>——</td>
<td>——</td>
</tr>
</tbody>
</table>

TRAFFIC CONTROL MANAGER’S EXPERIENCE

| **Project Name** | |
|——|——|

| **Project Location** | |
|——|——|

| **Contractor** | |
|——|——|

| **Contractor’s Project Manager** | |
|——|——|

| **Owner’s Representative: Name and Phone Number** | |
|——|——|

| **Design Engineer’s Representative: Name and Phone Number** | |
|——|——|

| **Water Mains/Sewer, Size & LF** | |
|——|——|

| **Initial Contract Amount** | $ |
|——|——|

| **Final Contract Amount** | $ |
|——|——|

| **Project Duration** | **Date Started:** |
|——|——|

| **Date Completed:** | |
|——|——|

| **Description of Project Traffic Control Activities** | |
|——|——|
Contractor Safety Record Form

(Complete Form Only For Projects That Meet Minimum Criteria)

Safety Program Information

A. Do you have a written safety program?

Yes □ (If yes, attach outline) No □

B. Which of the following does your safety program contain:

1. Health and safety training of its subcontractors?

 Yes □ No □

2. Documentation of health and safety training required?

 Yes □ No □

3. Hazard Communication Program (29 CFR 1910.1200, CCR Title 8 Section 5194)?

 Yes □ No □

4. Confined Space Entry and Rescue Program (29 CFR 1910.146, CCR Title 8 Section 5156-5159)?

 Yes □ (If yes, attach explanation) No □

5. “Hot Work” permit program (29 CFR 1910.146, CCR Title 8 5156-5159)?

 Yes □ (If yes, attach explanation) No □

 Yes □ No □ (If yes, attach explanation)

C. Equipment Maintenance Program for the following:

 1. Miscellaneous construction tools and equipment Yes □ No □

 2. Ladders Yes □ No □

 3. Scaffolds Yes □ No □

 4. Heavy Equipment Yes □ No □

 5. Vehicles Yes □ No □
D. Do you have a new employee safety orientation program?

Yes □ No □

1. If yes, does it include instruction in the following:

 (a) Company Safety Policy Yes □ No □
 (b) Company Safety Rules Yes □ No □
 (c) Safety Meeting Attendance Yes □ No □
 (d) Company Safety Record Yes □ No □
 (e) Hazard Recognition Yes □ No □
 (f) Hazard Reporting Yes □ No □
 (g) Injury Reporting Yes □ No □
 (h) Non-Injury Accident Reporting Yes □ No □
 (i) Personal Protective Equipment Yes □ No □
 (j) Respiratory Protection Yes □ No □
 (k) Fire Protection Yes □ No □
 (l) Housekeeping Yes □ No □
 (m) Toxic Substance Yes □ No □
 (n) Electrical Safety Yes □ No □
 (o) Fall Protection Yes □ No □
 (p) First-Aid/CPR Yes □ No □
 (q) Driving Safety Yes □ No □
 (r) Hearing Conservation Yes □ No □
 (s) Lock-Out/Tag-Out Yes □ No □
 (u) Asbestos Yes □ No □
 (v) Confined Spaces Yes □ No □
 (w) Hazard Communication Yes □ No □

E. Do you conduct safety meetings for your employees? Yes □ No □

1. If yes, how often:

 Daily □ Weekly □ Bi-weekly □ Monthly □ As Needed □

F. Do you conduct health and safety audits of work in progress?

Yes □ No □

1. If yes, who conducts the audits?

2. How often are the audits conducted?

G. Do you notify all employees of accidents and precautions related to accidents and near misses?

Yes □ No □

1. If yes, how is this notification accomplished?

 (a) Safety meetings □

 (b) Post notification in office □

 (c) Post notification at the site where the incident occurred □

 (d) Other ____________________________

H. Is safety a criteria in evaluating the performance of:

1. Employees □
2. Supervisors □
3. Management □

I. Does your firm hold “tailgate” safety meetings?

Yes □ No □

1. If yes, how often:

 Daily □ Weekly □ Bi-weekly □ Monthly □ As Needed □

J. Does your company have a drug and alcohol testing policy?

Yes □ No □

K. Does your company require that subcontractors participate in a drug surveillance/testing program?

Yes □ No □

L. Does your company have a method of disseminating safety information?

Yes □ No □
TECHNICAL SPECIFICATIONS

PI NO: 0012586
PONCE DE LEON AVENUE COMPLETE STREET RETROFIT AND BELTLINE CONNECTION
SECTION 01040
COORDINATION

PART 1 GENERAL

1.01 DESCRIPTION

A. Coordinate execution of the Work with subcontractors and the City’s Authorized Representative as required to maintain operation of the existing facilities and satisfactory progress of the Work.

B. Requirements of this Section will be in addition to those stated in 01300 Submittals Specification.

C. The City’s Authorized Representative may require a written explanation of the Contractor's plan for accomplishing separate phases of the Work.

PART 2 PRODUCTS

(NOT USED)

PART 3 EXECUTION

3.01 CUTTING AND PATCHING

A. The Contractor shall leave all chases or openings for the installation of its own or any of its subcontractor's work, or shall cut the same in existing work, and shall see that all sleeves or forms are at the work and properly set in ample time to prevent delays. See that all such chases, openings and sleeves are located accurately and are of proper size and shape and shall consult with the City’s Authorized Representative and its subcontractors concerned in reference to this work. In case of its failure to leave or cut all such openings or have all such sleeves provided and set in proper time, the Contractor shall cut them or set them afterwards at its own expense, but in so doing shall confine the cutting to the smallest extent possible consistent with the work to be done. In no case shall structural members be cut without the written consent of the City’s Authorized Representative.

B. Carefully fit around, close up, repair, patch, and point around the work specified herein to the satisfaction of the City’s Authorized Representative.

C. All of this work shall be done by careful workers competent to do such work and with the proper small hand tools. Power tools shall not be used except where, in the opinion of the City’s Authorized Representative, the type of tool proposed can be used without damage to any work or structures and without inconvenience or interference with the operation of any facilities. The City’s Authorized Representative’s concurrence with the type of tools shall not in any way relieve or
diminish the responsibility of the Contractor for such damage, inconvenience, or interference resulting from the use of such tools.

D. Do not cut or alter the work of any subcontractor, except with the written consent of the subcontractor whose work is to be cut or altered, or with the written consent of the City’s Authorized Representative. All cutting and patching or repairing made necessary by the negligence, carelessness or incompetence of the Contractor or any of its subcontractors, shall be done by, or at the expense of, the Contractor and shall be the responsibility of the Contractor.

3.02 COORDINATION

A. The Contractor shall consult with the City’s Authorized Representative on a daily basis while performing demolition, excavation, or any other alteration activity. No water or sewer function, utility or structure shall be altered, shut off or removed unless approved in advance, and in writing, by the City’s Authorized Representative. The Contractor shall give the City’s Authorized Representative at least 2-weeks’ advanced notice and look ahead schedules, in writing, of the need to alter, shut off or remove such function. These restrictions apply with the exception of Emergency work orders. Emergency work orders shall be coordinated and executed in the presence and under the direction of the City’s Authorized Representative.

B. Coordinate the Work with the City’s Authorized Representative and revise daily activities if needed so as to not adversely affect system operations. Such revisions in the proposed work schedule will be accomplished with no additional compensation to the Contractor.

3.03 OWNER’S RESPONSIBILITIES

A. All existing water system valves shall be operated or have City Engineer supervise Contractor operating valves.

3.04 PROTECTION AND RESTORATION OF WORK AREA

A. General: Return all items and all areas disturbed, directly or indirectly by work under these Specifications, to their original condition or better, as quickly as possible after work is completed.

1. The Contractor shall plan, coordinate, and execute the work such that disruption to personal property and business is held to a practical minimum.

2. All construction areas abutting lawns and yards of residential or commercial property shall be restored promptly. Backfilling of underground facilities, ditches, and disturbed areas shall be accomplished on a daily basis as work is completed. Finishing, dressing, and grassing shall be accomplished immediately thereafter, as a continuous operation within each area being constructed and with emphasis placed on completing each individual yard or business frontage. Care shall be taken to
provide positive drainage to avoid ponding or concentration of runoff.

3. Handwork, including raking and smoothing, shall be required to ensure that the removal of roots, sticks, rocks, and other debris is removed in order to provide a neat and pleasing appearance.

4. The City’s Authorized Representative shall be authorized to stop all work by the Contractor when restoration and cleanup are unsatisfactory and to require appropriate remedial measures.

B. Man-made Improvements: Protect or remove and replace with the City or City’s Representative's approval, all fences, walkways, mail boxes, pipe lines, drain culverts, power and telephone lines and cables, property pins and other improvements that may be encountered in the Work.

C. Cultivated Growth: Do not disturb cultivated trees or shrubbery unless approved by the City’s Authorized Representative. Any such trees or shrubbery which must be removed shall be heeled in and replanted under the direction of an experienced nurseryman.

D. Cutting of Trees: Do not cut trees for the performance of the work except as absolutely necessary. Protect trees that remain in the vicinity of the work from damage from equipment. Do not store spoil from excavation against the trunks. Remove excavated material stored over the root system of trees within 30 days to allow proper natural watering of the root system. Repair any damaged tree over 3-inches in diameter, not to be removed, under the direction of an experienced nurseryman. All trees and brush that require removal shall be promptly and completely removed from the work area and disposed of by the Contractor. No stumps, wood piles, or trash piles will be permitted on the work site.

E. Disposal of Rubbish: Dispose of all materials cleared and grubbed during the construction of the Project in accordance with the applicable codes and rules of the appropriate county, state and federal regulatory agencies.

F. Swamps and Other Wetlands

1. The Contractor shall not construct permanent roadbeds, berms, drainage structures or any other structures which alter the original topographic features within the easement.

2. All temporary construction or alterations to the original topography will incorporate measures to prevent erosion into the surrounding swamp or wetland. All areas within the easement shall be returned to their original topographic condition as soon as possible after work is completed in the area. All materials of construction and other non-native materials shall be disposed by the Contractor.

3. The Contractor shall provide temporary culverts or other drainage structures, as necessary, to permit the free migration of water between portions of a swamp, wetland or stream which may be temporarily divided by construction.

4. The Contractor shall not spread, discharge or dump any fuel oil, gasoline, pesticide,
or any other pollutant to adjacent swamps or wetlands.

G. Refer to Section 02920, Site Restoration

3.05 WATER FOR CONSTRUCTION PURPOSES

A. All water required for construction shall be furnished by the Owner. It shall be available by connecting to the Owner’s water system at a point approved by the City’s Authorized Representative. There shall be installed in every connection to the Owner’s water supply, and water meter with backflow preventer meeting the requirements of the City. The Contractor is responsible to pay for and install the meter and backflow preventer that will connect to the connection to the Owner’s water supply. The costs associated to the connection to the Owner’s water supply system shall be incidental and at no additional cost to the Owner. The Contractor shall meter all water usage. The Contractor shall notify the City one week in advance prior to connecting to the water system.

B. A total of the metered water used shall be submitted to the City’s Authorized Representative with each monthly application for payment

3.06 EXISTING UTILITIES AND OBSTRUCTIONS

A. The Drawings indicate utilities or obstructions that are known to exist according to the best information available. The Contractor shall call the Utilities Protection Center (UPC) at 811 or (800-282-7411) as required by Georgia Law (O.C.G.A. Sections 25-9-1 through 25-9-13) at least 72 hours (three business days) prior to construction to verify the location of the existing utilities.

B. Water and Sewer Separation

1. Water mains should maintain a minimum 10-foot edge-to-edge separation from sewer lines, whether gravity or pressure. If the main cannot be installed in the prescribed easement or right-of-way and provide the 10-foot separation, the separation may be reduced, provided the bottom of the water main is a minimum of 18-inches above the top of the sewer. Should neither of these two separation criteria be possible, the water main shall be installed below the sewer with a minimum vertical separation of 18-inches.

2. The water main, when installed below the sewer, shall be encased in concrete with a minimum 6-inch concrete thickness to the first joint in each direction. Where water mains cross the sewer, the pipe joint adjacent to the pipe crossing the sewer shall be cut to provide maximum separation of the pipe joints from the sewer.

3. No water main shall pass through, or come in contact with, any part of a sanitary sewer manhole.

C. Work shall be located as indicated on the Drawings, but the City’s Authorized Representative reserves the right to make modifications in locations as may be found
desirable to avoid interference with existing structures, utilities or other reasons. Where fittings are noted on the Drawings, such notation is for the Contractor’s convenience and does not relieve the Contractor for laying and joining different or additional items where required or when directed by the City’s Authorized Representative.

3.07 PIPE DISTRIBUTION

A. Pipe shall be distributed and placed in such a manner that will not interfere with traffic.

B. Distribution and stringing of pipe along the route will be limited to the total length which will be installed in one work day/work shift. The Owner reserves the right to reduce the distance in residential and commercial areas based on the effects of the pipe distribution on the adjacent property owners.

C. No street or roadway may be closed for unloading of pipe without first obtaining permission from the proper authorities. The Contractor shall furnish and maintain proper warning signs and obstruction lights for the protection of traffic along highways, streets and roadways upon which pipe is distributed.

D. No distributed pipe shall be placed inside drainage ditches.

E. Distributed pipe shall be placed as far as possible from the roadway pavement, but no closer than five feet from the roadway pavement, as measured edge-to-edge.

3.08 CONSTRUCTION OPERATIONS

A. Do not open the trench any further ahead of pipe laying operations than is necessary. Backfill and remove excess material immediately behind laying operations. Complete excavation and backfill for any portion of the trench in the same day.

B. Construction operations shall be limited to 250 feet along the water main route, including clean-up and utility exploration.

C. The Contractor shall insure that all work areas and roadways are free from excess excavated material, debris, mud, soil, and rocks etc. at the end of each work day. Contractor shall be responsible for sweeping all areas at the end of each work day.

3.09 CONNECTIONS TO WORK BY OTHERS

A. As shown on the Drawings, pipelines constructed under this Contract are to be connected to pipelines to be constructed by others.

B. Pipelines built under this Contract will be connected to pipelines constructed by others by removing the plugs and making the connection.

C. If the pipelines have not been constructed by others, the pipeline (under this Contract)
shall be laid to the required line and grade, terminated with a plugged connection at the location indicated on the Drawings and then backfilled. The connection point shall be located by survey methods for future reference and construction tie-in.

++ END OF SECTION 01040 ++
PART 1 GENERAL

1.01 SCOPE

A. Construction staking shall include all of the surveying work required to layout the Work and control the location of the finished Project. The Contractor shall have the full responsibility for constructing the Project to the correct horizontal and vertical alignment, as shown on the Drawings, as specified, or as ordered by the Engineer.

B. The Contractor shall assume all costs associated with rectifying work constructed in the wrong location.

C. Work under this Section also includes surveying work required to prepare Record Drawings as specified herein.

1.02 QUALITY ASSURANCE

A. The Contractor shall hire, at the Contractor's own expense, a Surveyor with current registration in the State of Georgia, acceptable to the Owner, to provide project construction staking and confirmation of the vertical and horizontal alignment.

B. Any deviations from the Drawings shall be confirmed by the Engineer prior to construction of that portion of the Project.

1.03 SUBMITTALS

A. Submit name and address of Registered Surveyor to Engineer.

B. On request of Engineer, submit documentation to verify accuracy of construction staking.

C. Submit record drawings in accordance with PART 3 of the Section.

PART 2 PRODUCTS

(NOT USED)

PART 3 EXECUTION

3.01 PROJECT CONDITIONS

A. The Drawings provide the location of principal components of the Project. The Engineer may order changes to the location of some of the components of the Project or provide clarification to questions regarding the correct alignment.

B. The Engineer will provide the following:

1. One vertical control point on the Project site with its elevation shown on the Drawings.
2. A minimum of two horizontal control points on the Project site with their coordinates shown on the Drawings.

3.02 GENERAL

A. From the information shown on the Drawings and the information to be provided as indicated in paragraph 3.01 above, the Contractor shall:

1. Be responsible for establishing GPS control coordinate control system, setting reference points and/or offsets, establishment of baselines, and all other layout, staking, and all other surveying required for the construction of the Project.

 a. The horizontal position of all points shall be referenced to the North American datum of 1983 (1986 adjustment) in the Georgia State Plane West 1002 Coordinate System.

 b. The vertical position of all points shall be referenced to the North American Vertical datum of 1988.

 c. All coordinate values shall be delivered as grid coordinates in US Survey Feet.

 d. The minimum data accuracy required for all record drawings shall be +/- 0.10 USFT (one tenth of one foot).

2. Safeguard all reference points, stakes, grade marks, horizontal and vertical control points, and shall bear the cost of re-establishing same if disturbed.

3. Stake out the limits of construction to ensure that the Work does not deviate from the indicated limits.

4. Stake out the pipeline horizontal and vertical alignment.

5. Be responsible for all damage done to reference points, baselines, center lines and temporary bench marks, and shall be responsible for the cost of re-establishment of reference points, baselines, center lines and temporary bench marks as a result of the operations.

6. Maintain a complete, accurate log of all control and survey work as it progresses.

B. Baselines shall be defined as the line to which the location of the Work is referenced, i.e., edge of pavement, road centerline, property line, right-of-way or survey line.

3.03 STAKING PRECISION

A. The precision of construction staking shall match the precision of components location indicated on the Drawings. Staking of utilities shall be done in accordance with standard accepted practice for the type of utility.

B. The precision of construction staking required shall be such that the location of the water main or sewer or storm drain can be established for construction and verified by the Engineer. Where the location of components of the water main or sewer or storm drain, (i.e. fittings, valves, manholes, road crossings, etc.) are not dimensioned, the establishment of the location of these components
shall be based upon scaling these locations from the Drawings with relation to readily identifiable
land marks, i.e. survey reference points, power poles, manholes etc.

C. Paved Surfaces: The Contractor shall establish a reference point for establishing and verifying the
paving subgrade and finished grade elevations. Any variance with grades shown on the Drawings
shall be identified by the Contractor and confirmed by the Engineer prior to constructing the base.

D. The Contractor’s attention is directed to Section 01040, Paragraph 3.06.

3.04 RECORD DRAWINGS

A. Water Mains

1. The Contractor shall submit record drawings which show the final installed location of the
water main and survey data for all installed pipe, valves and fittings, tunnel and casing limits
and service connections 3-inches in diameter and greater. Survey data shall consist of final
coordinates for all valves, fittings, tunnel and casing limits and main tap locations for service
connections 3-inches in diameter and greater and center line of pipe at points every 500 feet
along the length of pipe installed.

2. In addition, the location of all valves and fittings and main tap location for service
connections 3-inches in diameter and greater shall be indicated by at least 2 ties (measured
distances) from permanent fixed objects within the public right of way, as accepted by the
Engineer, to allow the Owner to locate the water main and components in the future without
the use of GPS instruments.

B. (Not Used)

C. The record drawings shall also indicate the horizontal and vertical location, dimensions and
materials of all utilities encountered during excavation.

D. Record drawings must be georeferenced to the U.S. State Plane Coordinate System, NAD 83 GA
West Zone, US Survey Feet. All drawings must contain two reference pins which are labeled and
tied to the Fulton County GPS Monument Network.

E. Two full size hard copies of record drawings shall be furnished to the Engineer for review. Each
record drawing shall be stamped with the name of the Contractor, signed and dated by the
Contractor’s Project Manager and signed, sealed and dated by the Surveyor. Record Drawings,
one approved by the Engineer, shall be scanned and saved as PDF’s.

F. The contractor shall provide an electronic copy of the record drawings in AutoCAD Civil 3D
2011 (.DWG) format.

G. Final submittal of record drawings shall be provided by two compact disks containing the signed
and sealed PDF’s and DWG files referenced above.

++ END OF SECTION 01055 ++
SECTION 01320
CONSTRUCTION PHOTOGRAPHY

PART 1 GENERAL

1.01 SCOPE

A. The Contractor shall furnish all labor, equipment and materials required to provide the Owner with digital construction photography of the Project as specified herein.

B. The Contractor shall provide for professional videos and photographs to be made prior to and after construction to provide documentation of conditions and aid in any damage claims assessment. All conditions which might later be subject to disagreement shall be shown in sufficient detail to provide a basis for decisions.

C. Video and photo files shall become the property of the Owner and none of the video or photographs herein shall be published without express permission of the Owner.

1.02 PRE AND POST CONSTRUCTION PHOTOGRAPHY

A. Prior to the beginning of any work, the Contractor shall provide for professional videos and photographs of the work area to record existing conditions.

1. The Contractor shall furnish a complete videotaped record of the pipeline route. The video tape shall include the date of taping and shall contain audio commentary to emphasize existing conditions along the entire route.

2. The route shall be videotaped prior to beginning of construction. The Contractor shall furnish three sets of compact disks containing the videotaped data to the Engineer.

3. The route shall also be videotaped at the completion of construction when directed by the Engineer. The video tape shall show the same areas and features as in the preconstruction videos. The Contractor shall furnish three sets of compact discs containing the videotaped data to the Engineer.

B. The pre-construction videos shall be submitted to the Engineer within 15 calendar days after receipt of construction Notice to Proceed by the Contractor. Post construction videos and photographs shall be provided prior to final acceptance of the project.

1.03 PROGRESS PHOTOGRAPHS

A. Photographs shall be taken to record the general progress of the Project during each pay period. Photographs shall be representative of the primary work being performed at the time.

B. All photographs shall be taken with a digital camera. The photographs shall include the date and time marking in the digital record. All photographs shall be labeled on a tab connected to the bottom of the photo to indicate date and description of work shown.

PART 2 PRODUCTS

2.01 PHOTOGRAPHS
A. Photography and video files shall be provided in CD-ROM format.

B. Photographs shall also be provided in hard copy format. The photographs shall include the date and time marking on the photograph. All photographs shall be labeled on a tab connected to the bottom of the photograph. Tab label shall contain:
 1. Project name.
 2. Orientation of view.
 3. Description of work shown.

C. All compact disks (CDs) furnished under this section shall be suitable for viewing with Windows Media Player.

PART 3 EXECUTION

3.01 SUBMITTALS

A. No construction shall start until pre-construction photography has been completed and accepted by the Engineer.

B. A minimum of ten 8 x 10-inch progress photographs shall be submitted with each application for payment. The view selection will be as determined by the Engineer. Photographs shall be submitted in Print File Archival Preservers, 8 1/2 x 11-inch plastic sleeves pre-punched for a 3-ring binder.

C. Construction photographs shall be submitted with each payment request. Failure to include photographs may be cause for rejection of the payment request.

D. The Contractor shall be responsible for all discrepancies not documented in the pre-construction videos and photography.

++ END OF SECTION 01320 +++
PART 1 GENERAL

1.01 SCOPE

A. The Contractor shall provide transportation of all equipment, materials and products furnished under these Contract Documents to the Work site. In addition, the Contractor shall provide preparation for shipment, loading, unloading, handling and preparation for installation and all other work and incidental items necessary or convenient to the Contractor for the satisfactory prosecution and completion of the Work.

B. All equipment, materials and products damaged during transportation or handling shall be repaired or replaced by the Contractor at no additional cost to the County prior to being incorporated into the Work.

1.02 TRANSPORTATION

A. All equipment shall be suitably boxed, crated or otherwise protected during transportation.

B. Where equipment will be installed using existing cranes or hoisting equipment, the Contractor shall ensure that the weights of the assembled sections do not exceed the capacity of the cranes or hoisting equipment.

C. Small items and appurtenances such as gauges, valves, switches, instruments and probes which could be damaged during shipment shall be removed from the equipment prior to shipment, packaged and shipped separately. All openings shall be plugged or sealed to prevent the entrance of water or dirt.

1.03 HANDLING

A. All equipment, materials and products shall be carefully handled to prevent damage or excessive deflections during unloading or transportation.

B. Lifting and handling drawings and instructions furnished by the manufacturer or supplier shall be strictly followed. Eyebolts or lifting lugs furnished on the equipment shall be used in handling the equipment. Shafts and operating mechanisms shall not be used as lifting points. Spreader bars or lifting beams shall be used when the distance between lifting points exceeds that permitted by standard industry practice.

C. Under no circumstances shall equipment or products such as pipe, structural steel, castings, reinforcement, lumber, piles, poles, etc., be thrown or rolled off of trucks onto the ground.

D. Slings and chains shall be padded as required to prevent damage to protective coatings and finishes.
PART 2 PRODUCTS

(NOT USED)

PART 3 EXECUTION

(NOT USED)

+++ END OF SECTION 01610 +++
SECTION 02150
SHEETING, SHORING AND BRACING

PART I GENERAL

1.01 SCOPE

A. This section specifies requirements for sheeting, shoring, and bracing of trenches and excavations greater than 5-feet in depth. Where shoring, sheeting, bracing or other supports are necessary, they shall be furnished, placed, maintained, and except as specified otherwise, removed by the Contractor.

B. Design Requirements:

1. The design, planning, installation and removal, if required, of all sheeting, shoring, lagging, and bracing shall be accomplished in such a manner as to maintain the required excavation or trench section and to maintain the undisturbed state of the soils below and adjacent to the excavation.

2. The Contractor shall design sheeting, shoring, and bracing in accordance with the OSHA Safety and Health Standards as well as state and local requirements.

3. Horizontal strutting below the barrel of a pipe and the use of pipe as support are not acceptable.

4. When the construction sequence of structures requires the transfer of bracing to the completed portions of any new structure or to any existing structure, the Contractor shall provide the Engineer with a complete design analysis of the expected impact of that bracing on the structure. This action shall in no way absolve the Contractor of responsibility of damage resulting from said bracing.

1.02 REFERENCES

A. This section contains references to the following documents. They are a part of this section as specified and modified. In case of conflict between the requirements of this section and those of the listed documents, the requirements of this section shall prevail.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSHA 2207</td>
<td>OSHA Safety and Health Standards, Revised 1987</td>
</tr>
</tbody>
</table>

1.03 SUBMITTALS

A. Prior to starting any excavation work requiring sheeting, shoring, and bracing, the Contractor shall submit his plans for trench and excavation support systems to the Engineer as working drawings in accordance with the requirements of the General Conditions. No provisions of the above requirements shall be construed as relieving the Contractor of his overall responsibility and liability for the work.

B. The Contractor shall submit a Certification of Compliance properly identified with the project name and project location. The Certification shall state that the sheeting, shoring and bracing
have been designed in accordance with the prevailing codes and standards by a Professional Engineer registered in the State of Georgia with the Engineer’s seal and signature appearing on the certification. Calculations shall not be submitted unless specifically requested by the Engineer.

PART 2 PRODUCTS

(NOT USED)

PART 3 EXECUTION

3.01 **GENERAL**

A. The construction of sheeting, shoring and bracing shall not disturb the state of soil adjacent to the trench and below the excavation bottom.

B. Trench sheeting below the top of a pipe shall be left in place.

C. Excavation shall not be started until the design for support systems has been accepted by the Engineer.

+++ END OF SECTION 02150 +++
SECTION 02225
TRENCH EXCAVATION AND BACKFILL

PART I GENERAL

1.01 SCOPE

A. The Contractor shall furnish all labor, materials, equipment, and incidentals required to perform all excavation and backfill required to complete the work as shown on the Drawings and as specified herein. The work shall include, but not be necessarily limited to, excavation and backfill for pipe and appurtenances, manholes and vaults, backfill and compaction, disposal of surplus and unsuitable material and all related work such as sheeting and bracing and dewatering.

B. Work shall also include the removal of trees, stumps, brush, debris or other obstacles which remain after clearing and grubbing operations, which may obstruct the work, and the removal of all other materials, including rock, to the extent necessary to install the pipe and appurtenances in conformance with the lines and grades shown on the Drawings and as specified herein.

C. Backfill shall include the refilling and compaction of the fill in the trenches and excavations up to the surrounding ground surface.

D. The trench is divided into five specific areas:
 1. Foundation: The area beneath the bedding, sometimes also referenced to as trench stabilization.
 2. Bedding: The area above the trench bottom (or foundation) and below the bottom of the barrel of the pipe.
 3. Haunching: The area above the bottom of the barrel of the pipe up to a specified height above the bottom of the barrel of the pipe.
 4. Initial Backfill: The area above the haunching material and below a plane 12-inches above the top of the barrel of the pipe.
 5. Final Backfill: The area above a plane 12-inches above the top of the barrel of the pipe.

E. The choice of method, means, techniques, and equipment rests with the Contractor. The Contractor shall select the method and equipment for trench excavation and backfill depending upon the: type of material to be excavated and backfilled, the depth of excavation, the amount of space available for operation of equipment, storage of excavated material, proximity of man-made improvements to be protected and available easement or right of way.

1.02 QUALITY ASSURANCE

A. Reference Standards: The Contractor shall comply with the applicable provisions and recommendations of the latest editions of the following standards, except as otherwise shown on the Drawings or specified herein.

 1. ASTM C33 – Standard Specification for Concrete Aggregates
3. ASTM D698 – Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³)
4. ASTM D4253 – Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using A Vibratory Table
5. ASTM D6938 – Standard Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)
6. ASTM D1556 – Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method
7. ASTM D1557 - Standard Test Method for Laboratory Compaction Characteristics of Soil using Modified Effort (56,000 ft-lbf/ft³)
8. ASTM D2937 – Standard Method for Density of Soil in Place by the Drive-Cylinder Method

B. Density: All references to "maximum dry density" shall mean the maximum dry density defined by ASTM D698, except that for cohesionless, free draining soils "maximum dry density" shall mean the maximum index density as determined by ASTM D4253. Determination of the density of foundation, bedding, haunching, or backfill materials in place shall meet with the requirements of ASTM D1556, ASTM D6938 or ASTM D2937.

C. Sources and Evaluation Testing: Testing of materials to certify conformance with the Specifications shall be performed by an independent testing laboratory.

1.03 SUBMITTALS

A. The Contractor shall submit record documents in accordance with the requirements of the General Conditions. The Contractor shall record locations of all pipelines installed referenced to survey benchmarks. The Contractor shall also include the locations of all underground utilities encountered and/or rerouted. The Contractor shall provide dimensions, materials, elevations, inverts and direction of flow. The Contractor shall use GPS technology or conventional survey methods to locate utilities.

1.04 SAFETY

A. Perform all trench excavation and backfilling activities in accordance with the Occupational Safety and Health Act of 1970 (PL 91-596), as amended. The Contractor shall pay particular attention to the Safety and Health Regulations Part 1926, Subpart P "Excavations" as described in OSHA publication 2226.

1.05 TESTING

A. Testing shall be performed by an approved independent laboratory.

B. Compaction testing shall be performed in accordance with the requirements of ASTM D1556 or ASTM D6938.

PART 2 PRODUCTS

2.01 TRENCH FOUNDATION MATERIALS

A. Crushed Stone: Crushed stone shall be utilized for trench foundation (trench stabilization) and shall meet the requirements of the Georgia Department of Transportation Specification 800.01, Group I (limestone, marble, or dolomite) or Group II (quartzite, granite, or gneiss). Stone size shall be between No. 57 and No. 4, inclusive.
2.02 BEDDING AND HAUNCHING MATERIALS

A. Water Mains

1. Unless specified otherwise, bedding and haunching materials shall be suitable materials that have been excavated from the trench and have been approved by the Engineer for use as pipe bedding and haunching. Materials shall be clean and free of rock larger than 2-inches at its largest dimension, organics, cinders, stumps, limbs, frozen earth or mud, man-made wastes and other unsuitable materials.

2. Crushed stone, if utilized for bedding and haunching, shall meet the requirements of the Georgia Department of Transportation Specification 800.01, Group I (limestone, marble, or dolomite) or Group II (quartzite, granite, or gneiss). Stone size shall be between No. 57 and No. 4, inclusive.

3. The Contractor’s attention is directed to Section 02616, paragraph 3.04.

B. Sewers and Storm Drains: Crushed stone utilized for bedding and haunching shall meet the requirements of the Georgia Department of Transportation Specification 800.01, Group I (limestone, marble, or dolomite) or Group II (quartzite, granite, or gneiss). Stone size shall be between No. 57 and No. 4, inclusive.

C. Filter Fabric - Non-Woven Type

1. Filter fabric associated with bedding shall be a UV stabilized, spunbonded, continuous filament, needle-punched, polypropylene, non-woven geotextile.

2. The fabric shall have an equivalent open size (EOS or AOS) of 120 - 70. The fabric shall also conform to the minimum property values listed in the following table:

<table>
<thead>
<tr>
<th>Fabric Property</th>
<th>Unit</th>
<th>Test Procedure</th>
<th>Average Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typical</td>
</tr>
<tr>
<td>Weight</td>
<td>oz/yd²</td>
<td>ASTM D 3776</td>
<td>8.3</td>
</tr>
<tr>
<td>Thickness</td>
<td>mils</td>
<td>ASTM D 1777</td>
<td>105</td>
</tr>
<tr>
<td>Grab Strength</td>
<td>lbs.</td>
<td>ASTM D 4632</td>
<td>240</td>
</tr>
<tr>
<td>Grab Elongation</td>
<td>%</td>
<td>ASTM D 4632</td>
<td>>50</td>
</tr>
<tr>
<td>Tear Strength</td>
<td>lbs.</td>
<td>ASTM D 4533</td>
<td>100</td>
</tr>
<tr>
<td>Mullen Burst</td>
<td>psi</td>
<td>ASTM D 3786</td>
<td>350</td>
</tr>
<tr>
<td>Puncture Resistance</td>
<td>lbs.</td>
<td>ASTM D 4833</td>
<td>115</td>
</tr>
<tr>
<td>Permittivity</td>
<td>sec⁻¹</td>
<td>ASTM D 4491</td>
<td>1.7</td>
</tr>
<tr>
<td>Water Permeability</td>
<td>cm/sec</td>
<td>ASTM D 4491</td>
<td>0.4</td>
</tr>
<tr>
<td>Water Flow Rate</td>
<td>gpm/ft²</td>
<td>ASTM D 4491</td>
<td>120</td>
</tr>
<tr>
<td>UV Resistance (500 hrs)</td>
<td>%</td>
<td>ASTM D 4355</td>
<td>>85</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td>2 - 13</td>
</tr>
</tbody>
</table>
3. If ordered by the Engineer, the filter fabric manufacturer shall furnish the services of a competent factory representative to supervise and/or inspect the installation of pipe. This service will be furnished for a minimum of 10 days during initial pipe installation.

4. Filter fabric shall be equal to Polyfelt TS 700, Trevira 1125 or SuPac 7-MP.

2.03 INITIAL BACKFILL

A. Initial backfill material shall be crushed stone or earth materials as specified for bedding and haunching materials.

B. Earth materials utilized for initial backfill shall be suitable materials selected from materials excavated from the trench. Suitable materials shall be clean and free of rock larger than 2-inches at its largest dimension, organics, cinders, stumps, limbs, frozen earth or mud, man-made wastes and other unsuitable materials. Should the material excavated from the trench be saturated, the saturated material may be used as earth material, provided it is allowed to dry properly and it is capable of meeting the specified compaction requirements. When necessary, initial backfill materials shall be moistened to facilitate compaction by tamping.

C. If materials excavated from the trench are not suitable for use as initial backfill material, provide select material conforming to the requirements of this Section.

2.04 FINAL BACKFILL

A. Final backfill material shall be general excavated earth materials, shall not contain rock larger than 2-inches at its greatest diameter, cinders, stumps, limbs, man-made wastes and other unsuitable materials.

B. If materials excavated from the trench are not suitable for use as final backfill material, provide select material conforming to the requirements of this Section.

2.05 SELECT BACKFILL

A. Select backfill shall be materials that meet the requirements as specified for bedding, haunching, initial backfill or final backfill materials, including compaction requirements.

2.06 CONCRETE

A. Concrete for bedding, haunching, initial backfill, or encasement shall have a compressive strength of not less than 3,000 psi, with not less than 5.5 bags of cement per cubic yard and a slump between 3 and 5-inches. Ready-mixed concrete shall be mixed and transported in accordance with ASTM C94. Reinforcing steel shall conform to the requirements of ASTM A615, Grade 60.

2.07 FLOWABLE FILL

A. Controlled strength flowable fill shall be used as trench backfill only when authorized, in writing, by the Engineer.

B. Controlled low strength flowable fill shall conform to Section 600 of the Georgia Department of Transportation Standard Specifications for Construction of Roads and Bridges – latest edition.
C. Flowable fill design mix shall be for “excavatable” fill. Design mix shall be submitted to the
Engineer for approval in accordance with Section 600.3.03 of the GDOT Standard Specifications.

2.08 GRANULAR MATERIAL

A. Granular material, where required for trench backfill, shall be sand, river sand, crushed stone or
aggregate, pond screenings, crusher run, recycled concrete, or other angular material. Granular
material shall meet gradation requirements for Size No. 57 or finer.

2.09 GRADED AGGREGATE BASE

A. Graded aggregate base shall be Class “A” meeting the requirements of the Georgia Department of
Transportation Specification Section 815.01.

PART 3 EXECUTION

3.01 TRENCH EXCAVATION

A. Topsoil and grass shall be stripped a minimum of 6-inches over the trench excavation site and
stockpiled separately for replacement over finished graded areas.

B. Trenches shall be excavated to the lines and grades shown on the Drawings with the centerlines of
the trenches on the centerlines of the pipes and to the dimensions which provide the proper support
and protection of the pipe and other structures and accessories.

C. Trench Width:

1. The sides of all trenches shall be vertical to a minimum of one foot above the top of the pipe.
 Unless otherwise indicated on the Drawings, the maximum trench width shall be equal to the
 sum of the outside diameter of the pipe plus two feet. The minimum trench width shall be that
 which allows the proper consolidation of the haunching and initial backfill material.

2. Excavate the top portion of the trench to any width within the construction easement or right-of-
way which will not cause unnecessary damage to adjoining structures, roadways, pavement,
utilities, trees or private property. Where necessary to accomplish this, provide sheeting and
shoring.

3. Where rock is encountered in trenches, excavate to remove boulders and stones to provide a
minimum of 12-inches clearance between the rock and any part of the pipe, manhole, vault or
other structure.

D. Trench Depth:

1. The trenches shall be excavated to the required depth or elevation which allow for the placement
of the pipe and bedding to the dimensions and elevations shown on the Drawings.

2. Where rock is encountered in trenches for pipelines, excavate to the minimum depth which will
provide a clearance below the pipe barrel of 8-inches for pipe 21-inches in diameter and smaller
and 12-inches clearance for larger pipe, manholes and other structures. Remove boulders and
stones to provide above minimum clearances between the rock and any part of the pipe,
manhole, vault or other structure.
E. Excavated Materials:

1. Excavated materials shall be placed adjacent to the work to be used for backfilling as required. Top soil shall be carefully separated and lastly placed in its original location.

2. Excavated material shall be placed sufficiently back from the edge of the excavation to prevent caving of the trench wall, to permit safe access along the trench and not cause any drainage problems.

3. Excavated material shall be placed so as not to damage existing landscape features or man-made improvements and also allow access to valves and hydrants.

3.02 SHEETING, SHORING AND BRACING

A. Sheeting, shoring and bracing is specified in Section 02150.

B. Protection of the excavation against caving or settling of the banks shall be the sole responsibility of the Contractor. The Contractor shall protect the sides of his excavation by sheeting and bracing as may be necessary. No actions or instructions by the Engineer shall be regarded as the responsibility for security of the trench or the surrounding areas. The full responsibility remains with the Contractor.

C. The Contractor shall furnish, put in place and maintain sheeting and bracing required to support the side of the excavation and prevent loss of ground which could damage or delay the work or endanger adjacent structures or vehicular traffic. If the Engineer is of the opinion that at any point sufficient or proper supports have not been provided, he may order additional supports placed at the expense of the Contractor. Compliance with such order shall not relieve the Contractor from his responsibility for the sufficiency of such supports. Care shall be taken to prevent voids outside of the sheeting, but if voids are formed, they shall be immediately filled and rammed.

D. The Contractor shall leave in place to be imbedded in the backfill of the trench, all wood sheeting, bracing and other related items as shown on the Drawings, or which the Engineer may direct him in writing to leave in place at any time during the progress of the work for the purpose of preventing injury to structures, utilities, or property, whether public or private. The Engineer may direct that timber used for sheeting and bracing in the trench be cut off at any specified elevation, after backfilling and tamping has reached this level.

E. All sheeting and bracing not left in place shall be carefully removed in such manner as not to endanger the construction of other structures, utilities or property, whether public or private.

F. The right of the Engineer to order sheeting and bracing left in place shall not be construed as creating any obligation on his part to issue such orders, and his failure to exercise his right to do so shall not relieve the Contractor from liability for damages to persons or property occurring from or upon the work occasioned by negligence or otherwise, growing out of a failure on the part of the Contractor to leave in place in the trench sufficient sheeting and bracing to prevent any caving or moving of the ground adjacent to the sides of the trench.
G. The Contractor shall receive no payment, other than that included in the price to be paid for pipe, for any extra timber used for sheeting, bracing and other related items. The Contractor shall receive no payment for such timber which was used for the convenience of the Contractor.

3.03 TEST PITS

A. Test pits for the purpose of locating underground utilities or structures as an aid in establishing the precise location of new work may be excavated by the Contractor. Test pits shall be backfilled as soon as the desired information has been obtained. The backfilled surface shall be maintained in a satisfactory condition for travel until resurfaced as hereinafter specified.

B. Excavation and backfill of test pits shall be considered work incidental to the project and the cost shall be included in the appropriate bid item.

C. If, for any reason, a test pit is left open for any period of time, it shall be properly barricaded and lighted by the Contractor.

3.04 ROCK EXCAVATION

A. Definition of Rock: Any material which, in the opinion of the Engineer, cannot be excavated with conventional excavating equipment, and must be removed by drilling and blasting.

B. Blasting:

1. Exhaust other practical means of excavating prior to utilizing blasting as a means of excavation. Provide licensed, experienced workmen to perform blasting. Conduct blasting operations in accordance with all existing ordinances and regulations. Protect all buildings and structures from the effects of the blast. Repair any resulting damage. If the Contractor repeatedly uses excessive blasting charges or blasts in an unsafe or improper manner, the Engineer may direct the Contractor to employ an independent blasting consultant to supervise the preparation for each blast and approve the quantity of each charge.

2. Refer to Section 02020, Use of Explosives

C. Removal of Rock: Dispose of rock off site that is surplus or not suitable for use as rip rap or backfill.

D. The Contractor shall notify the Engineer prior to any blasting. Additionally, the Contractor shall notify the Owner, all cities and/or counties having jurisdiction, and the local fire department before any charge is set.

E. Following review by the Engineer regarding the proximity of permanent buildings and structures to the blasting site, the Engineer may direct the Contractor to employ an independent, qualified specialty sub-contractor, approved by the Engineer, to: monitor the blasting by use of a seismograph; identify the areas where light charges must be used, conduct pre-blast and post-blast inspections of structures, including photographs or videos; and maintain a detailed written log.

3.05 DEWATERING EXCAVATIONS

A. Dewater excavation continuously to maintain a water level two feet below the bottom of the trench.
B. Control drainage in the vicinity of excavation so the ground surface is properly pitched to prevent water running into the excavation.

C. There shall be sufficient pumping equipment, in good working order, available at all times, to remove any water that accumulates in excavations. Where the utility crosses natural drainage channels, the work shall be conducted in such a manner that unnecessary damage or delays in the prosecution of the Work will be prevented. Provision shall be made for the satisfactory disposal of surface water to prevent damage to public or private property.

D. In all cases, accumulated water in the trench shall be removed before placing bedding or haunching, laying pipe, placing concrete or backfilling.

E. Where dewatering is performed by pumping the water from a sump, crushed stone shall be used as the medium for conducting the water to the sump. Sump depth shall be at least two feet below the bottom of the trench. Pumping equipment shall be of sufficient quantity and/or capacity to maintain the water level in the sump two feet below the bottom of the trench. Pumps shall be a type such that intermittent flows can be discharged. A standby pump shall be required in the event the operating pump or pumps clog or otherwise stop operation.

F. Dewater by use of a well point system when pumping from sumps does not lower the water level two feet below the trench bottom. Where soil conditions dictate, the Contractor shall construct well points cased in sand wicks. The casing shall be jetted into the ground, followed by the installation of the well point, filling casing with sand and withdrawing the casing.

3.06 TRENCH FOUNDATION AND STABILIZATION

A. The bottom of the trench shall provide a foundation to support the pipe and its specified bedding. The trench bottom shall be graded to support the pipe and bedding uniformly throughout its length and width.

B. If, after dewatering as specified above, the trench bottom is spongy, or if the trench bottom does not provide firm, stable footing and the material at the bottom of the trench will still not adequately support the pipe, the Engineer may determine that the trench bottom is unsuitable and the Engineer may then order trench stabilization by directing the Contractor to over excavate trench bottom and fill with crushed stone.

C. Where the replacement of unsuitable material with crushed stone does not provide an adequate trench foundation, the trench bottom shall be excavated to a depth of at least two feet below the specified trench bottom. Place filter fabric in the bottom of the trench and support the fabric along the trench walls until the trench stabilization, bedding, haunching and pipe have been placed at the proper grade. The ends of the filter fabric shall be overlapped above the pipe.

D. Where trench stabilization is provided, the trench stabilization material shall be compacted to at least 95 percent of the maximum dry density, unless shown or specified otherwise.

3.07 BEDDING AND HAUNCHING

A. Prior to placement of bedding material, the trench bottom shall be free of any water, loose rocks, boulders, or large dirt clods.
B. Bedding material shall be placed to provide uniform support along the bottom of the pipe and to place and maintain the pipe at the proper elevation. The initial layer of bedding placed to receive the pipe shall be brought to the grade and dimensions indicated on the Drawings. All bedding shall extend the full width of the trench bottom. The pipe shall be placed and brought to grade by tamping the bedding material or by removal of the excess amount of the bedding material under the pipe. Adjustment to grade line shall be made by scraping away or filling with bedding material. Wedging or blocking up of pipe shall not be permitted. Applying pressure to the top of the pipe, such as with a backhoe bucket, to lower the pipe to the proper elevation or grade shall not be permitted. Each pipe section shall have a uniform bearing on the bedding for the length of the pipe, except immediately at the joint.

C. At each joint, excavate bell holes of ample depth and width to permit the joint to be assembled properly and to relieve the pipe bell of any load.

D. After the pipe section is properly placed, add the haunching material to the specified depth. The haunching material shall be shovel sliced, tamped, chinked or otherwise consolidated to provide uniform support for the pipe barrel and to fill completely the voids under the pipe, including the bell hole. Prior to placement of the haunching material, the bedding shall be clean and free of any water, loose rocks, boulders, or dirt clods.

E. Pipe Bedding:

1. The Contractor shall furnish and install pipe on the type and thickness of bedding as shown on the Drawings or as specified by the Engineer.

2. Pipe bedding requirements for large water transmission mains shall be as specified in Section 02667.

E. Manholes, Vaults and Other Structures: Excavate to a minimum of 12-inches below the planned elevation of the base of the manhole, vault or structure. Place and compact crushed stone bedding material to the required grade before constructing the manhole, vault or structure.

G. Compaction:

1. Bedding and haunching materials under pipe, manholes, vaults, structures and accessories shall be compacted to a minimum of 95 percent of the maximum dry density, unless shown or specified otherwise.

2. Bedding and haunching materials within the limits of restrained joint pipe shall be compacted to a minimum of 95 percent of the maximum dry density, unless shown or specified otherwise.

3.08 INITIAL BACKFILL

A. Initial backfill shall be placed to anchor the pipe, protect the pipe from damage by subsequent backfill and ensure the uniform distribution of the loads over the top of the pipe.

B. Place initial backfill material carefully around the pipe in uniform layers to a depth of at least 12-inches above the pipe barrel. Layer depths shall be a maximum of 6-inches for pipe 18-inches in diameter and smaller and a maximum of 12-inches for pipe larger than 18-inches in diameter.

C. Backfill on both sides of the pipe simultaneously to prevent side pressures.
D. Compact each layer thoroughly with suitable hand tools or tamping equipment.

E. Initial backfill shall be compacted to a minimum 95 percent of the maximum dry density, unless shown or specified otherwise. Initial backfill within the limits of restrained joint pipe shall be compacted to a minimum 95 percent of the maximum dry density, unless shown or specified otherwise.

F. If materials excavated from the trench are not suitable for use as backfill materials, provide select backfill material conforming to the requirements of this Section for initial backfill.

3.09 CONCRETE ENCASEMENT FOR PIPELINES

A. Where concrete encasement is shown on the Drawings for pipelines, excavate the trench to provide a minimum of 12-inches clearance from the barrel of the pipe. Lay the pipe to line and grade on solid concrete blocks or solid bricks. In lieu of bedding, haunching and initial backfill, place concrete to the full width of the trench and to a height of not less than 12-inches above the pipe bell. Do not backfill the trench for a period of at least 24 hours after concrete is placed.

3.10 FINAL BACKFILL

A. Backfill carefully to restore the ground surface to its original condition.

B. The top 6-inches of backfill shall be topsoil or graded aggregate base material, depending upon the trench location.

C. Excavated material which is unsuitable for backfilling, and excess material, shall be disposed of in a manner approved by the Engineer. Surplus soil may be neatly distributed and spread over the site, if approved by the Engineer, except that surplus soil shall not be distributed and spread over the site in areas under Corps of Engineers jurisdiction. If such spreading is allowed, the site shall be left in a clean condition and shall not affect pre-construction drainage patterns. Surplus rock from the trenching operations shall be removed from the site.

D. If materials excavated from the trench are not suitable for use as backfill materials, provide select backfill material conforming to the requirements of this Section.

E. Pipelines: After initial backfill material has been placed and compacted, backfill with final backfill material. Place backfill material in uniform layers, compacting each layer thoroughly as follows:
 1. In 6-inch layers, if using light power tamping equipment, such as a "jumping jack"
 2. In 12-inch layers, if using heavy tamping equipment, such as hammer with tamping feet

F. Manholes, Vaults and other Structures:
 1. Backfilling shall be carried up evenly on all walls of an individual structure simultaneously. A variation of 2-feet in elevation will be the maximum allowable. Backfill shall not be allowed against walls until they and their supporting slabs, if applicable, have attained sufficient strength. Backfill shall be subject to the approval of the Engineer.
2. In locations where pipes pass through walls, the Contractor shall take the following precautions to consolidate the backfill up to an elevation of at least 2-feet above the bottom of the pipe:

a. Place fill in such areas for a distance of not less than 3-feet either side of the centerline of the pipe in level layers not exceeding 6-inches in depth.

b. Thoroughly compact each layer with a power tamper to the satisfaction of the Engineer.

3. Temporary bracing shall be provided as required during construction of all structures to protect partially completed structures against construction loads, hydraulic pressure and earth pressure. The bracing shall be capable of resisting all loads applied to the walls as a result of backfilling.

G. Final backfill shall be compacted to a minimum 95 percent of the maximum dry density, unless specified otherwise. Final backfill underlying pavement and backfill under dirt and gravel roads and within the limits of restrained joint pipe shall be compacted to a minimum 95 percent of the maximum dry density, unless specified otherwise.

H. Concrete or bituminous asphalt removed during construction shall not be placed in backfill.

I. The surface of filled areas shall be graded to smooth true lines in conformance with the grades or elevations shown on the Drawings.

3.11 ADDITIONAL MATERIAL

A. Where final grades above the pre-construction grades are required to maintain minimum cover, additional fill material will be as shown on the Drawings. Utilize excess material excavated from the trench, if the material is suitable. If excess excavated materials are not suitable, or if the quantity available is not sufficient, provide additional suitable fill material.

3.12 BACKFILL WITHIN RIGHT-OF-WAYS

A. Compact backfill within the limits of the any right-of-way including the backfill underlying pavement and sidewalks, and backfill under dirt and gravel roads to a minimum 95 percent of the maximum dry density.

3.13 BACKFILL WITHIN GEORGIA DOT RIGHT-OF-WAY

A. Backfill within the Georgia DOT right-of-way shall meet the requirements stipulated in the "Utility Accommodation Policy and Standards", published by the Georgia Department of Transportation.

3.14 FLOWABLE FILL

A. Where flowable fill is utilized, excavate the trench to provide a minimum of 6-inches clearance on either side of the pipe barrel. Lay the pipe to line and grade on solid concrete blocks or bricks. In lieu of bedding, haunching and initial backfill, place flowable fill to the full width and depth of the trench.

B. Flowable fill shall be protected from freezing for a period of 36 hours after placement. Minimum temperature of flowable fill at point of delivery shall be 50 degrees F.
3.15 COMPACTED GRANULAR MATERIAL

A. Where compacted granular material is required as initial and final backfill material, it shall be placed after bedding and haunching material specified elsewhere has been placed. Compacted granular material shall be compacted to a minimum 95 percent of the maximum dry density.

3.16 TESTING AND INSPECTION

A. The soils testing laboratory is responsible for compaction tests in accordance with paragraph 1.02 of this Section.

B. Compaction tests:

1. Compaction tests will be required in existing or proposed streets, sidewalks, driveways and other existing or proposed paved areas at varying depths and at intervals as determined by the Engineer.

2. Minimum requirements for compaction testing shall be a minimum of one (1) test for each 400 feet or less of pipeline and one (1) test at each manhole, vault and other structure unless soil conditions or construction practices, in the opinion of the Engineer, warrant the need for additional tests. One (1) complete compaction test shall consist of individual tests in the same vertical plane over the installed pipe, beginning at a depth of 2-feet above the top of the pipe and at successive two feet vertical increments up to the top of the backfill.

3. The Engineer shall direct where additional compaction tests will be performed along the Project route.

C. The soils testing laboratory shall be responsible for inspecting and testing stripped site, sub grades and proposed fill materials.

D. The Contractor's duties relative to testing include:

1. Notifying laboratory of conditions requiring testing.
2. Coordinating with laboratory for field testing.
3. Providing excavation as necessary for laboratory personnel to conduct tests.
4. Paying costs for additional testing performed beyond the required scope.
5. Paying costs for re-testing where initial tests reveal non-conformance with specified requirements.

E. Inspection

1. Earthwork operations, acceptability of excavated materials for bedding or backfill, and placing and compaction of bedding and backfill shall be subject to inspection by the Engineer.

2. Foundations and shallow spread footing foundations shall be inspected by a geotechnical engineer, who shall verify suitable bearing conditions.
F. Contractor shall comply with applicable codes, ordinances, rules, regulations and laws of local, municipal, state and federal authorities having jurisdiction.

+ + + END OF SECTION 02225 + + +
PART 1 GENERAL

1.01 SCOPE

A. The Contractor shall furnish all labor, materials, equipment and incidentals to furnish and install polyethylene encasement of ductile iron water mains.

B. The polyethylene encasement shall prevent contact with the pipe and the surrounding backfill and bedding material, but it is not intended to be completely airtight or watertight.

1.02 SUBMITTALS

A. Complete shop drawings, samples and engineering data shall be submitted to the Engineer in accordance with the requirements of the General Conditions of the Contract Documents. In addition the following specific information shall be provided:

1.03 QUALITY ASSURANCE

A. Reference Standards: The Contractor shall comply with the applicable provisions and recommendations of the latest editions of the following standards, except as otherwise shown on the Drawings or specified herein.

1. ANSI/AWWA C105/A21.5 – Polyethylene Encasement for Ductile-Iron Pipe Systems

PART 2 PRODUCTS

2.01 POLYETHYLENE FILM

A. Polyethylene film shall be shall be manufactured in accordance with AWWA/ANSI C105/A21.5.
B. Linear low-density polyethylene film.

1. Linear low-density polyethylene film shall be manufactured of virgin polyethylene material in accordance with ASTM D4976.

2. Physical properties of finished film:

 - Tensile Strength: 3,600 psi*
 - Elongations: 800 percent*
 - Dielectric Strength: 800 V/mil thickness minimum
 - Impact Resistance: 600 g minimum
 - Propagation Tear Resistance: 2,550 grams force minimum*

 * Minimum in machine and transverse direction

3. Linear low-density polyethylene film shall have a minimum thickness of 0.008-inches (8 mil).

C. High-density cross laminated polyethylene film.

1. High-density cross laminated polyethylene film shall be manufactured of virgin polyethylene material in accordance with ASTM D4976.

2. Physical properties of finished film:

 - Tensile Strength: 6,300 psi*
 - Elongations: 100 percent*
 - Dielectric Strength: 800 V/mil thickness minimum
 - Impact Resistance: 800 g minimum
 - Propagation Tear Resistance: 250 grams force minimum*

 * Minimum in machine and transverse direction

3. High-density cross laminated polyethylene film shall have a minimum thickness of 0.004-inches (4 mil).

D. Polyethylene film to be supplied shall be black (weather resistant) in color.

E. Tube or sheet width sizes shall be as shown on the following table:
<table>
<thead>
<tr>
<th>Pipe Diameter (inches)</th>
<th>Polyethylene Width Flat Tube (inches)</th>
<th>Polyethylene Width Sheet (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td>48</td>
</tr>
<tr>
<td>12</td>
<td>27</td>
<td>54</td>
</tr>
<tr>
<td>14</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>16</td>
<td>34</td>
<td>68</td>
</tr>
<tr>
<td>18</td>
<td>37</td>
<td>74</td>
</tr>
<tr>
<td>20</td>
<td>41</td>
<td>82</td>
</tr>
<tr>
<td>24</td>
<td>54</td>
<td>108</td>
</tr>
<tr>
<td>30</td>
<td>67</td>
<td>134</td>
</tr>
<tr>
<td>36</td>
<td>81</td>
<td>162</td>
</tr>
<tr>
<td>42</td>
<td>81</td>
<td>162</td>
</tr>
<tr>
<td>48</td>
<td>95</td>
<td>190</td>
</tr>
<tr>
<td>54</td>
<td>108</td>
<td>216</td>
</tr>
<tr>
<td>60</td>
<td>108</td>
<td>216</td>
</tr>
<tr>
<td>64</td>
<td>121</td>
<td>242</td>
</tr>
</tbody>
</table>

F. The polyethylene film supplied shall be clearly marked every two feet along its length with the following information in one-inch high (minimum) letters:

- Manufacturer’s name or trademark
- Year of manufacture
- ANSI/AWWA C105/A21.5
- Minimum film thickness and material type
- Applicable range of nominal pipe diameter size(s)
- Warning – Corrosion Protection – Repair any damage

G. Polyethylene adhesive tape 1-1/2-inches wide shall be used to seal joints.

PART 3 EXECUTION

3.01 INSTALLATION

A. The Contractor shall remove all lumps of clay, mud, cinders, etc. on the pipe surface before installation of the polyethylene encasement. During installation, soil or embedment material shall not be trapped between the pipe and the polyethylene.
B. Sufficient slack shall be provided in contouring to prevent stretching the polyethylene where it bridges irregular surfaces, such as bell-spigot interfaces, bolted joints, or fittings and to prevent damage to the polyethylene caused by backfilling operations. Overlaps shall be secured with adhesive tape.

C. For installation below the water table tube form polyethylene shall be used with both ends sealed with tape or plastic tie straps at the joint overlap. Circumferential wraps of tape shall be placed at 2-feet intervals along the barrel of the pipe to minimize the space between the polyethylene and the pipe.

D. Installation on ductile iron pipes shall be in accordance with methods A, B or C as outlined in ANSI/AWWA C105/A21.5 and as specified below. Methods A and B are for use with polyethylene tubes and Method C is for use with polyethylene sheets.

1. Method A:
 a. Cut polyethylene tube to a length approximately 2-feet longer that the pipe section. Slip the tube around the pipe, centering it to provide 1-foot overlap on each adjacent pipe section and bunching it accordion-fashion lengthwise until it clears the pipe ends.
 b. Lower the pipe into the trench and make up the pipe joint with the preceding section of pipe. A shallow bell hole must be made at the joints to facilitate installation of the polyethylene tube.
 c. After assembling the pipe joint, make the overlap of the polyethylene tube. Pull the bunched polyethylene from the preceding length of pipe, slip secure it in place. Then slip the end of the polyethylene from the new pipe section over the end of the first wrap until it overlaps the joint at the end of the preceding length of pipe. Secure the overlap in place. Take up the slack along the barrel of the pipe, securing the fold at quarter points. Proceed to the next section of pipe in the same manner.

2. Method B:
 a. Cut polyethylene tube to a length approximately 1-foot shorter than that of the pipe section. Slip the tube around the pipe, centering it to provide 6-inch of bare pipe at each end. Take up the slack width at the top to the pipe for a snug but not tight fit along the barrel of the pipe securing the fold at quarter points. Secure the ends with polyethylene tape.
 b. Before making up a joint, slip a 3-feet length of polyethylene tube over the end of the preceding pipe section, bunching it accordion-fashion lengthwise. Alternatively, place a 3-feet length of polyethylene sheet in the trench under the joint to be made. After completing the joint, pull the 3-feet length of polyethylene over or around the join. Overlapping the polyethylene previously installed on each end snug and secure with polyethylene tape. A shallow bell hole is necessary and shall be made at joints to facilitate the installation of the polyethylene tube or sheet.

3. Method C:
 a. Cut polyethylene sheet to a length approximately 2-feet longer than that of the pipe section. Center the cut length to provide a 12-inch overlap on each adjacent pipe section,
bunching it until it clears the pipe ends. Wrap the polyethylene around the pipe so that it circumferentially overlaps the top quadrant of the pipe. Secure the cut edge of the polyethylene sheet at intervals of approximately 3-feet.

b. Lower the pipe into the trench and make up the pipe joint with the preceding section of pipe. A shallow bell hole must be made at the joints to facilitate installation of the polyethylene. After completing the joint, make the overlap and secure the ends as specified in Paragraph 3.01B of this Section.

E. Care shall be taken when installing backfill to prevent damage to the wrapping.

3.02 REPAIRS

A. Repair cuts, tears, punctures, or damage to polyethylene with adhesive tape or with a short length of polyethylene sheet, or with a tube cut open, wrapped around the pipe to cover the damaged area, and secured in place.

3.03 OPENINGS IN ENCASEMENT

A. Provide openings for blow-offs, air and vacuum valves, and similar appurtenances by cutting an X in the polyethylene and temporarily folding back the film. After the appurtenance is installed, tape the slack securely to the appurtenance, and repair the cut and any other damaged areas in the polyethylene with tape.

B. Direct service taps may also be made through the polyethylene with any resulting damaged areas being repaired as described above. To make direct service taps, apply multiple wraps of adhesive tape completely around the polyethylene-encased pipe to cover the area where the tapping machine and chain will be mounted. After the tapping machine is mounted, the corporation stop shall be installed directly through the tape and polyethylene. After the direct tap is completed, the entire circumferential area shall be inspected for damage and repaired if needed.

3.04 JUNCTIONS BETWEEN WRAPPED AND UNWRAPPED PIPE

A. Where polyethylene-wrapped pipe joins an adjacent pipe that is not wrapped, extend the polyethylene wrap to cover the adjacent pipe for a distance of at least 3-feet. Secure the end with circumferential turns of adhesive tape.

B. Service lines of dissimilar metals shall be wrapped with polyethylene or a suitable dielectric tape for a clear minimum distance of 3-feet away from the ductile iron pipe.

3.05 BACKFILL FOR POLYETHYLENE-WRAPPED PIPE

A. Use the same backfill as that specified for pipe without polyethylene wrap, exercising care to prevent damage to the polyethylene wrapping when placing backfill.

+++ END OF SECTION 02616 +++
PART 1 GENERAL

1.01 SCOPE

A. The Contractor shall furnish all labor, materials and equipment to install and test fire hydrants as specified herein and as shown on the Drawings.

B. Fire hydrants shall be Mueller Super Centurion 250 A-423, modified to meet the water utility’s standard requirements as specified in this section. In order to insure compatibility with the water utility’s existing inventory of hydrants and spare parts and standardized maintenance procedures, no other hydrants shall be acceptable.

1.02 QUALITY ASSURANCE

A. Reference Standards: The Contractor shall comply with the applicable provisions and recommendations of the latest editions of the following standards, unless indicated otherwise on the Drawings or specified herein.

1. ANSI B18-2.1 - Standard specification for Square and Hex Bolt Screws, including Askew Head Bolts, Hex Cap Screws and Lag Screws

2. ANSI/AWWA C110/A21.10 - Ductile Iron and Gray Iron Fittings

4. ANSI/AWWA C151/A21.51 - Ductile Iron Pipe, Centrifugally Cast

5. ANSI/AWWA C502 - Dry Barrel Fire Hydrants.

6. ANSI/AWWA C550 – Protective Epoxy Interior Coatings for Valves and Hydrants

7. ANSI/AWWA C600 - Installation of Ductile Iron Water Mains and Their Appurtenances.

8. AWWA M17 - Installation, Field Testing and Maintenance of Fire Hydrants.

B. Testing and Inspection: The Contractor shall perform all tests and inspections required by this specification unless otherwise stated. The Contractor may use the manufacturer’s facility or any independent laboratory acceptable to the Owner. The Owner reserves the right to perform any of the test and inspection requirements where such tests and inspections are needed to further determine compliance with this specification.

C. Samples, visual tests and inspections may be required by the Owner. These shall be performed and witnessed in the presence of the Engineer at no extra cost. Failure to comply with this provision may cause rejection of the hydrants.
1.03 SUBMITTALS

A. Submittals shall be made in accordance with the requirements of the General Conditions of the Contract Documents. In addition, the following specific information shall be provided:

1. Shop Drawings and Product Data
2. Certificate of compliance with the requirements of ANSI/AWWA C502.
3. Records of standard tests.

PART 2 PRODUCTS

2.01 FIRE HYDRANTS

A. Fire hydrant shall be three way, post type, dry top traffic design model with compression main valve opening against and closing in the direction of normal water flow. Hydrant shall be designed for 250 psi working pressure.

B. Fire hydrants shall conform to the requirements of ANSI/AWWA C502.

C. Manufacture

1. Hydrant shall have the name of the manufacturer, the year of manufacture, operating pressure and valve size in legible raised letters cast on the barrel. Hydrant shall also have the letters “AWB” cast on the barrel for identification purposes.

2. Dry Top Bonnet:
 a. Bonnet shall be constructed with a moist proof lubrication chamber which encloses the operating threads and which provides automatic lubrication of the threads and bearing surfaces each time the hydrant is operated.
 b. Bonnet assembly shall be comprised of a top O-ring serving as a dirt and moisture barrier and a lower O-ring which will serve as a pressure seal. The O-ring packing shall be included in an oil filled reservoir so that all operating parts are enclosed in a sealed oil bath.
 c. O-rings shall be Buna N in accordance with ASTM D2000.
 d. An oil filler plug shall be provided in the bonnet to permit checking of the oil level and adding oil when required.

3. Operating Nut
 a. Operating nut shall be ASTM B584 bronze, 7/8 - 1 inch tapered square nut with tamper-proof device.
 b. The tamper proof device shall be a ductile iron combination hold-down nut and operating nut shield to eliminate operation of hydrant with wrenches other than a special socket-type wrench. Arrow shall be cast on the periphery of the bonnet indicating direction of the operation for opening the
4. **Nozzles**
 a. Fire hydrant shall have two (2) 2-1/2-inch hose connections, 120 degrees apart and one (1) 4-1/2-inch pumper connection, with National Standard threads. Nozzles to be made of bronze and have interlocking lugs to prevent blowout.
 b. Nozzle caps nuts shall have the same cross section as the operating nut on the bonnet. Nozzle caps shall be secured to the fire hydrant with non-kinking type steel chain with chain loop on cap ends to permit free turning of caps.
 c. Outlet Nozzle Threads shall conform to the National Fire Protection Association (NFPA) for National Standard Fire Hose Coupling Screw Threads.

5. **Main Valve**
 a. The internal main valve diameter shall be a minimum of 5 1/4- inches.
 b. The valve shall be designed to open against pressure and close with pressure.
 c. Valve shall be made of synthetic rubber and formed to fit the valve seat accurately.
 d. The valve shall be reversible.

6. **Main Valve Seat**
 a. The main valve seat shall be ASTM B584 bronze and its assembly into the hydrant shall involve bronze to bronze thread engagement.
 b. Two (2) O ring seals shall be provided as a positive pressure seal between the bronze seat ring and the shoe.
 c. Valve assembly pressure seals shall be obtained without the employment of torque or torque compressed gaskets.
 d. The hydrant shall be designed to allow the removal of all operating parts through the hydrant barrel by means of a single disassembly wrench without excavating.

7. **Traffic Design**
 a. Hydrant barrel section shall be connected at the ground line in a manner that will prevent damage to the hydrant when struck by a vehicle.
 b. Main valve rod section shall be connected at the ground line by a frangible coupling.
 c. The barrel and ground line safety construction shall be such that the hydrant nozzles can be rotated to any desired position without disassembling or removing the top operating components and top section of the hydrant barrel.

8. **Drain**
 a. The drain mechanism shall be designed to operate with the operation of
the main valve and shall allow a momentary flushing of the drain ports.

b. A minimum of two (2) internal positive opening drain valves and two (2) external bronze lined drain ports shall be required in the main valve assembly to drain the hydrant barrel.

c. The drain valve facings shall be made of either rubber or polyethylene material and retained in position with stainless steel screws.

9. Shoe

a. Shoe shall be ductile iron, ASTM A536, grade 65-45-12. Interior of shoe shall be epoxy coated in accordance with ANSI/AWWA C550.

b. Main valve travel stop shall be an integral part of the shoe permitting full opening of the hydrant and positive stop without over travel of the stem.

10. Barrel Extension Sections: Barrel extension sections shall be available in six (6) inch increments complete with rod, extension, coupling and necessary flanges gaskets and bolts so that extending the hydrant can be accomplished without excavating.

11. Nuts and Bolts: Nuts and bolts shall be corrosion resistant. Bolt material shall develop the physical strength requirements of ASTM A307 and may have either regular or square heads with dimensions conforming to ANSI B18.2.1 Nuts, bolts and studs shall be cadmium-plated (ASTM A165, grade NS) or zinc-coated (ASTM A153 or ASTM B633), or rust-proofed by a process acceptable to the Engineer.

12. O Rings: O rings shall be rubber and conform to the requirements of ASTM 2000.

13. Markings: Bury mark of fire hydrant shall be cast on the barrel of the hydrant. The bury mark shall provide not less than 18-inches of clearance from the centerline of the lowest nozzle to the ground.

14. Direction of Opening: Hydrant shall be designed to open “right” or clockwise.

15. Joint Assemblies: Complete joint assemblies consisting of glands, gaskets, bolts and nuts shall be furnished.

16. Coating and Painting

a. All iron parts of the hydrant, inside and outside, shall be cleaned and all surfaces shall be coated with a two-part epoxy. Epoxy shall be Amercoat 370.

b. The outside of the hydrant above ground level shall be cleaned and thereafter shop painted with two (2) coats of Sherwin Williams Quick Dry Alkyd Enamel, Mueller paint code RP. Color shall be aluminum.

17. Lubrication: All bronze, threaded contact moving parts shall, during shop assembly, be lubricated and protected by a coating of rustproof compound to prevent damage in shipment and storage.
PART 3 EXECUTION

3.01 INSPECTION

Prior to installation, inspect all hydrants for direction of opening, nozzle threading, operating nut and cap nut dimensions, tightness of pressure containing bolting, cleanliness of inlet elbow, handling damage and cracks. Defective hydrants shall be corrected or held for inspection by the Engineer.

3.02 HYDRANT INSTALLATION

A. Hydrants shall be placed at the locations indicated on the Drawings. The Contractor shall install proper “bury” hydrants or shall use, at no cost to the Owner, proper length extensions to ensure that each fire hydrant is installed in accordance with the manufacturer’s recommendation and the requirements of these Specifications.

B. Hydrants shall stand plumb with pumper nozzle facing the roadway.

C. Hydrants shall be set to the finished grade with the centerline of the lowest nozzle 18-inches above finished grade.

D. When placed behind curb, the hydrant barrel shall be set such that the distance from the face of the curb to the edge of the hydrant shall be 21-inches. Where no curb exists, the hydrant shall be set as directed by the Engineer.

3.03 CONNECTION TO WATER MAIN

A. Fire hydrant shall be connected to the water main with a ductile iron branch connection. Gate valves shall be used on fire hydrant branches as shown on the Drawings.

B. The connection of the hydrant to the water main shall be through a ductile iron hydrant tee or a welded outlet for main lines with a diameter of 24-inches or greater. Tapping sleeves shall not be allowed.

C. Hydrants shall be attached to the water main by the following method:

1. For water mains 20 inches and smaller, the isolation valve shall be attached to the water main by connecting the valve to the hydrant tee.

2. For water mains 24 inches and larger, the isolation valve shall be attached to the water main by providing an anchor coupling between the valve and welded outlet or hydrant tee.

3. The isolation valve shall be attached to the hydrant by providing an anchor coupling between the valve and hydrant, if the hydrant and valve are less than two feet apart. Otherwise, provide mechanical joint ductile iron pipe with retainer glands on the hydrant and valve.
D. Pipe connecting the fire hydrant to the water main shall be 6-inch diameter class 350 ductile iron pipe meeting the requirements of Section 02665, Water Mains and Accessories. Anchor coupling shall be as specified in Section 02665.

E. Anchoring and Bracing: The shoe of each fire hydrant and the hydrant tee shall be braced against unexcavated earth at the ends of the trench with poured concrete thrust blocks as shown on the Drawings.

F. Drainage: No. 57 stone shall be placed around the shoe of the fire hydrant for a minimum distance of 18-inches below the drain ports, 6-inches above the drain ports, 15-inches laterally on each side of the shoe and 24-inches from the back of the shoe towards the main.

G. Provide resistance to avoid transmitting shock moment to the lower barrel and inlet connection by pouring a concrete collar 6-inches thick with a diameter of 24 inches at the ground line around the hydrant barrel.

3.04 FIELD PAINTING

A. After hydrant is installed and approved by the Engineer, the Contractor shall touch up all exposed hydrant surfaces as directed by the Engineer. Touch up paint shall be as specified in paragraph 2.01 C 16 of this Section.

B. The bonnet of each hydrant shall be painted in one of the following colors to indicate the diameter of the water main that the hydrant is connected to:

<table>
<thead>
<tr>
<th>Water Main Diameter (inches)</th>
<th>Hydrant Bonnet Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 - 8</td>
<td>Silver</td>
</tr>
<tr>
<td>10 - 12</td>
<td>Yellow</td>
</tr>
<tr>
<td>16 and larger</td>
<td>Green</td>
</tr>
</tbody>
</table>

C. Hydrants that are connected to non-potable water mains (i.e. raw water mains) shall be painted violet (light purple).

D. Private hydrants shall be painted red.

3.05 TESTING

All fire hydrants shall be tested in strict accordance with the requirements of ANSI/AWWA C502, with no additional cost to the Owner. A certificate of compliance will be furnished to the Engineer.

3.06 REMOVAL AND SALVAGE OF EXISTING HYDRANTS

A. Remove all existing hydrants shown on the Drawings to be removed. Hydrants shall be removed as follows:

1. Disconnect hydrant from barrel section.

2. Saw cut or remove barrel section to a minimum of 12-inches below finished grade.

3. Remove hydrant valve cover and concrete pad, valve box and extension stem. Insure that valve is closed. Valve shall remain in place.
4. Deliver removed hydrant, valve cover, valve box and extension stem to the water utility’s storage yard as directed by the Engineer.

B. Backfill excavations and compact as specified in Section 02225 and restore area as required and as directed by the Engineer.

++ END OF SECTION 02645 ++
SECTION 02647
MANHOLES FRAME AND COVER AND VALVE COVER ADJUSTMENT

PART 1 GENERAL

1.01 SCOPE

The Contractor shall provide all labor, materials, equipment and incidentals required to adjust existing manhole frames and covers and valve covers to finished grade as specified herein.

1.02 SUBMITTALS

Submittals shall be made in accordance with the requirements of 01300 Submittals. In addition, the following specific information shall be provided:

1. Manufacturer’s data for pre-mix (bag) concrete
2. Description of the proposed method of concrete curing.

1.03 QUALITY CONTROL

Reference Standards: The Contractor shall comply with the applicable provisions and recommendations of the latest editions of the following standards, except as otherwise shown on the Drawings or specified herein.

1. ASTM C270 - Standard Specification for Mortar for Unit Masonry
2. ASTM C443 - Standard Specification for Joints for Circular Concrete Sewer and Culvert Pipe using Rubber Gaskets
3. ASTM C478 - Standard Specification for Precast Reinforced Concrete Manhole Sections

1.04 DESIGN CRITERIA

A. The elevation of manhole frame and covers and valve covers will vary with each location. The Contractor shall adjust the top of the manhole frame and cover and valve cover to the finished grade of the pavement or existing ground or higher than the ground surface as directed by the City’s Authorized Representative.

B. For Georgia Department of Transportation (GDOT) milling and resurfacing projects, refer to GDOT Utilities Accommodation Manual (UAM) Chapter 5.4 for recommendations on lowering and raising manholes and other utilities in order to adjust them to the new grades.
PART 2 PRODUCTS

2.01 MANHOLE FRAMES AND COVERS AND VALVE COVERS

Refer to the City Standard Details in the Appendix.

2.02 BRICK

A. Bricks used to adjust manhole frames to grade shall conform to the requirements of ASTM C32, Grade MS. Bricks shall also conform to the following requirements, unless otherwise approved by the City’s Authorized Representative.

B. All brick shall be new and whole, of uniform standard size, and straight and parallel edges and square corners. Bricks shall be of compact textures, burned hard entirely through, free from injurious cracks and flaws, and shall have a clear ring when struck together. No soft or salmon brick shall be used in any part of the Work. Brick shall be culled after delivery, if required, and no culls shall be used except at such places, to such extent, and under such conditions as may be approved by the City’s Authorized Representative.

2.03 MORTAR

A. Mortar used to adjust manhole frames to grade shall be made of one part portland cement and two parts clean sand. Cement shall be type 1 and shall conform to ASTM C150. Sand shall meet requirements of ASTM C144.

B. Mortar shall be prepared only in the quantities needed for immediate use. Mortar which has been mixed for more than thirty (30) minutes or which has set or has been retempered shall not be used in the Work.

2.04 GRADE ADJUSTMENT RINGS

A. Grade adjustment rings shall be used to adjust manhole frames to grade and shall be precast reinforced concrete conforming to ASTM C478. Rings shall be free of cracks, voids and other defects.

B. Adjustment rings shall be tested to assure compliance with impact and loading requirements in accordance with AASHTO’s Standard Specifications.

2.05 PRECAST CONCRETE MANHOLE TOP SECTIONS

A. Precast concrete manhole top sections shall conform to the typical manhole details as shown on the Drawings.

B. Precast manhole section shall be manufactured, tested and marked in accordance with the latest provisions of ASTM C478.
C. The minimum compressive strength of the concrete for all sections shall be 4,000 psi.

D. The maximum allowable absorption of the concrete shall not exceed 8 percent of the dry weight.

E. The circumferential reinforcement in the conical top section shall consists of one (1) line of steel and shall be not less than required by ASTM C478.

F. Precast manhole section joints shall be offset tongue and groove type, supplied with Tylox Super Seal pre-lubricated gasket as manufactured by Hamilton Kent, RPS lubricated gasket as manufactured by Press-Seal Gasket Corporation or Conseal CS-202 butyl rubber sealant as manufactured by Concrete Sealants, Inc.

G. Each section of the precast manhole shall have not more than two (2) slots for the purpose of handling and laying. These slots shall be tapered and shall be plugged with rubber stoppers or mortar after installation.

H. The interior and exterior surfaces of the manhole section shall have a smooth hard finish, and shall be free from cracks, chips, and spalls.

PART 3 EXECUTION

3.01 GENERAL

All activities shall be performed in accordance with the manufacturer’s recommendations and regulations established by OSHA. Attention shall be drawn to those safety requirements involving working with scaffolding and entering confined spaces.

3.02 ADJUSTMENT OF MANHOLE FRAMES AND COVERS

A. The top elevation of manhole frames shall be adjusted to grade unless shown otherwise on the Drawings. A maximum adjustment of twelve (12) inches will be allowed using brick and mortar or grade adjustment rings. Brick used will be in accordance with the requirements of this section.

B. The cast iron frame for the manhole cover shall be set at the required elevation and properly anchored to the riser section. Where manholes are constructed in paved areas, the top surface of the frame and cover shall be tilted to conform to the exact slope, crown and grade of the existing adjacent pavement.

3.03 ADJUSTMENT OF VALVE COVERS
Valve covers shall be adjusted to grade as directed by the City’s Authorized Representative. All components required to adjust the valve box and cover to the required grade will be furnished by the City.

3.04 BACKFILL

The Contractor shall place and compact backfill materials, in the area of excavation surrounding manholes and valve covers in accordance with the requirements of Section 02225, Trench Excavation and Backfill.

3.05 CONCRETE PAD AND PRE-CAST RINGS

After the manhole covers and valve covers have been adjusted to final grade, cast-in-place or precast concrete pads or rings shall be installed around the valve covers as shown on the Standard Details and as directed by the City’s Authorized Representative.

3.06 CLEANUP

After the manhole frame and cover and valve cover adjustment work has been completed, the Contractor shall cleanup the area. All excess material and debris not incorporated into the permanent installation shall be disposed of by the Contractor. Site restoration shall be performed in accordance with the requirements of Section 02700, Removing and Replacing Pavement and Section 02920, Site Restoration.

+++ END OF SECTION 02647 +++
SECTION 02665
WATER MAINS AND ACCESSORIES

PART I GENERAL

1.01 SCOPE

A. Furnish all labor, materials, equipment and incidentals required for the complete installation of water mains and accessories as shown on the Drawings and as specified herein. The Work of this Section also includes, but is not limited to, hydraulic testing and disinfection of the completed water mains after installation.

B. This Section includes ductile iron pipe and fittings ranging in size from 4-inches in diameter through 64-inches in diameter.

C. Supply all products and perform all work in accordance with applicable American Society for Testing and Material (ASTM), American Water Works Association (AWWA), American National Standards Institute (ANSI), or other recognized standards. Latest revisions of all standards are applicable.

D. Galvanized pipe and fittings shall not be used as any part of the Water Transmission and Distribution System, nor shall it be used to join any appurtenances to the System.

1.02 QUALITY ASSURANCE

A. Reference Standards: The design, manufacturing and assembly of elements of the products herein specified shall comply with the applicable provisions and recommendations of the latest editions of the following standards, except as otherwise shown on the Drawings or otherwise specified.

1. ANSI/AWWA C104/A21.4 - Cement-Mortar Lining for Ductile-Iron Pipe and Fittings

2. ANSI/AWWA C110/A21.10 - Ductile-Iron and Gray-Iron Fittings

3. ANSI/AWWA C111/A21.11 - Rubber-Gasket Joints for Ductile-Iron Pressure Pipe and Fittings

5. ANSI/AWWA C150/A21.50 - Thickness Design of Ductile-Iron Pipe

6. ANSI/AWWA C151/A21.51 - Ductile-Iron Pipe, Centrifugally Cast

8. ANSI/AWWA C600 - Installation of Ductile-Iron Water Mains and Their Appurtenances

10. AWWA C651 – Disinfecting Water Mains
1.03 SUBMITTALS

A. Submittals shall be made in accordance with the requirements of the General Conditions of the Contract Documents. In addition, the following specific information shall be provided:

1. Product data and engineering data, including shop drawings.

2. Evidence that manufacturers have consistently produced products of satisfactory quality and performance for a period of at least two (2) years.

3. Written certification that all products furnished comply with all applicable requirements of these specifications.

B. For pipe 24-inches in diameter or greater, submit shop drawings to the Engineer for review showing a complete laying plan of all pipe, including all fittings, adapters, valves and specials along with the manufacturer’s drawings and specifications indicating complete details of all items. The pipe details shall include stationing, pipe class or design and supporting computations; and laying schedule which specifies pipe class, class coding, pipe stationing for all changes in grade or horizontal alignment, transition stations for various pipe classes and the limits of each reach of restrained joint pipe. The above shall be submitted to the Engineer for review before fabrication and shipment of these items.

1.04 TRANSPORTATION AND HANDLING

A. Furnish equipment and facilities for unloading, handling, distributing and storing pipe, fittings and accessories. Make equipment available at all times for use in unloading. Do not drop or dump materials. Any materials dropped or dumped will be subject to rejection without additional justification. Pipe handled on skids shall not be rolled or skidded against the pipe on the ground.

B. Handle pipe, fittings, and accessories carefully to prevent shock or damage. Handle pipe by rolling on skids, forklift, or front end loader. Do not use material damaged in handling. Slings, hooks or pipe tongs shall be padded and used in such a manner as to prevent damage to the exterior coatings or internal lining of the pipe.

1.05 STORAGE AND PROTECTION

A. Store all pipe which cannot be distributed along the route. Make arrangements for the use of suitable storage areas.

B. Stored materials shall be kept safe from damage. The interior of all pipe, fittings and other appurtenances shall be kept free from dirt or foreign matter at all times.

C. Pipe shall not be stacked higher than the limits recommended by the manufacturer. The bottom tier shall be kept off the ground on timbers, rails or concrete. Pipe in tiers shall be alternated: bell, plain end; bell, plain end. At least two rows of timbers shall be placed between tiers and chocks, affixed to each other in order to prevent movement. The timbers shall be large enough to prevent contact between the pipe in adjacent tiers.

D. Stored mechanical and push-on joint gaskets shall be placed in a cool location out of direct sunlight. Gaskets shall not come in contact with petroleum products. Gaskets shall be used on a first-in, first-out basis.
E. Mechanical joint bolts shall be handled and stored in such a manner that will ensure proper use with respect to types and sizes.

1.06 WATER MAIN LOCATION

A. The minimum depth of cover over the pipe shall be four (4) feet and the maximum cover shall be five (5) feet. Any deviations must be approved by the Engineer.

B. The installation of the water main parallel to another utility in the same vertical plane is not permitted, i.e., "stacking of utilities is not permitted.

PART 2 PRODUCTS

2.01 DUCTILE IRON PIPE

A. Ductile iron pipe shall be manufactured in accordance with ANSI/AWWA C151/A21.51. All pipe, except specials, shall be furnished in nominal lengths of 18 to 20 feet. Sizes will be as shown on the Drawings. All pipe shall have a minimum pressure rating as indicated in the following table and corresponding minimum wall thickness, unless otherwise specified or shown on the Drawings:

<table>
<thead>
<tr>
<th>Pipe Sizes (inches)</th>
<th>Pressure Class (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 - 12</td>
<td>350</td>
</tr>
<tr>
<td>14 - 18</td>
<td>350</td>
</tr>
<tr>
<td>20</td>
<td>300</td>
</tr>
<tr>
<td>24</td>
<td>250</td>
</tr>
<tr>
<td>30 - 64</td>
<td>200</td>
</tr>
</tbody>
</table>

B. Flanged pipe minimum wall thickness shall be equal to Special Class 53. Flanges shall be furnished by the pipe manufacturer.

C. Fittings shall be ductile iron and shall conform to ANSI/AWWA C110/A21.10 or ANSI/AWWA C153/A21.53 with a minimum rated working pressure of 250 psi.

D. Joints

1. Unless shown or specified otherwise, joints shall be push-on or restrained joint type for pipe and standard mechanical, push-on or restrained joints for fittings. All pipe and fittings attached to bridge structures shall have restrained joints. Push-on and mechanical joints shall conform to ANSI/AWWA C111/A21.11.

2. The only acceptable restrained joint systems are identified in the table below. No field welding of restrained joint pipe will be allowed.
<table>
<thead>
<tr>
<th>Pipe Dia. (inches)</th>
<th>Acceptable Restrained Joints</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 – 12</td>
<td>Fast-Grip Flex Ring, Field Lok TR Flex, Push-On Restrained Joint Type A, MJ with Retainer Gland</td>
</tr>
<tr>
<td>16 – 24</td>
<td>Fast-Grip Flex Ring, Field Lok TR Flex, Push-On Restrained Joint Type A, MJ with Retainer Gland</td>
</tr>
<tr>
<td>30 – 36</td>
<td>Flex Ring, TR Flex, Push-On Restrained Joint Type B, MJ with Retainer Gland</td>
</tr>
<tr>
<td>42 – 48</td>
<td>Flex-Ring, TR Flex, N/A, MJ with Retainer Gland</td>
</tr>
<tr>
<td>54 – 64</td>
<td>Lok-Ring, TR Flex, N/A, N/A</td>
</tr>
</tbody>
</table>

* Fittings and valves only, and only where specifically allowed.

3. Restrained joint pipe (RJP) on supports shall have bolted joints and shall be specifically designed for clear spans of at least 36 feet.

4. Flanged joints shall meet the requirements of ANSI B16.1, Class 125.

E. Gaskets: Gaskets for the various types of joints shall be as follows:

1. Gaskets for mechanical joints shall be made of vulcanized styrene butadiene (SBR) as specified in ANSI/AWWA C111/A21.11 unless specified otherwise. Reclaimed or natural rubber shall not be used. Gaskets shall be free from porous areas, foreign material and other defects that make them unfit for the use intended.

2. Gaskets for flanged joints shall be made of synthetic rubber, ring type or full face type and shall be 1/8-inch thick. Gaskets shall conform to the dimensions specified in ANSI/AWWA C111/A21.11.

3. Gaskets for push-on and restrained joints shall be in accordance with the pipe manufacturer’s design dimensions and tolerances. Gaskets shall be made of vulcanized styrene butadiene (SBR) as specified in ANSI/AWWA C111/A21.11 unless specified otherwise.

F. Bolts and Nuts

1. Provide the necessary bolts for connections. All bolts and nuts shall be threaded in accordance with ANSI B1.1, Coarse Thread Series, Class 2A external and 2B internal fit.

2. Bolts and nuts for mechanical joints shall be tee head bolts and nuts of high-strength low-alloy steel having a minimum yield strength of 45,000 psi. Dimensions of bolts and nuts shall be in accordance with the dimensions shown in ANSI/AWWA C111/A21.11.
3. Flanged joints shall be bolted with through stud or tap bolts of required size as directed. Bolt length and diameter shall conform to ANSI/AWWA C115 for Class 125 flanges shown in ANSI/ASME B16.1.

4. Bolts for exposed service shall be zinc plated, cold pressed, steel machine bolts conforming to ASTM A307, Grade B. Nuts for exposed service shall be zinc plated, heavy hex conforming to ASTM A563. Zinc plating shall conform to ASTM B633, Type II.

5. Bolts for submerged service shall be stainless steel machine bolts conforming to ASTM A193, Grade B8. Nuts shall be heavy hex, stainless steel conforming to ASTM A194, Grade 8.

G. Mechanical joint glands shall be ductile iron.

H. Welded Outlets: Welded outlets may be provided in lieu of tees or saddles on mains with a diameter greater than or equal to 24-inches. The pipe joint on the outlet pipe shall meet the joint requirements specified above. The minimum pipe wall thickness of the parent pipe and the outlet pipe shall be Special Thickness Class 53 (Pressure Class 350 for 60 and 64-inch sizes). The welded outlet shall be rated for 250 psi working pressure. Each welded outlet shall be hydrostatically tested at 500 psi. The welded outlet shall be fabricated by the manufacturer of the parent pipe. The maximum outlet diameters shall not exceed those listed in the table below:

<table>
<thead>
<tr>
<th>Parent Pipe Diameter, Inches</th>
<th>Maximum Outlet Diameter, Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>16</td>
</tr>
<tr>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>36</td>
<td>24</td>
</tr>
<tr>
<td>42</td>
<td>30</td>
</tr>
<tr>
<td>48</td>
<td>30</td>
</tr>
<tr>
<td>54</td>
<td>30</td>
</tr>
<tr>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>64</td>
<td>30</td>
</tr>
</tbody>
</table>

I. Thrust collars shall be welded-on ductile iron body type designed to withstand thrust due to 250 psi internal pressure on a dead end from either direction on that pipe size. The thrust collars shall be continuously welded to the pipe by the pipe manufacturer.

J. Solid sleeves shall be used to connect plain end ductile iron pipe. Solid sleeves shall meet the requirements of ANSI/AWWA C110/A21.10 for long pattern and have a minimum pressure rating of 250 psi. Solid sleeves shall have mechanical or restrained joints as specified in this section or as shown on the Drawings. Solid sleeves shall be used only in locations shown on the Drawings or at the discretion of the Engineer. Solid sleeves shall be manufactured by American Cast Iron Pipe Company or U. S. Pipe.

K. Pipe stubs for all structure connections shall not exceed 2-feet in length. Caps shall be furnished where required.

M. Cement Lining
1. Interior surfaces of all ductile iron pipe and fittings shall be cleaned and lined with a cement mortar lining applied in conformity with ANSI/AWWA C104/A21.4. If lining is damaged or found faulty upon delivery, the damaged pipe sections shall be repaired or removed from the site as directed by the Engineer.

2. The minimum lining thickness shall be as shown in the following table. Lining shall be square and uniform with regard to the longitudinal axis of the pipe.

<table>
<thead>
<tr>
<th>Pipe Diameter (Inches)</th>
<th>Minimum Lining Thickness (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 - 12</td>
<td>1/8</td>
</tr>
<tr>
<td>14 - 24</td>
<td>3/32</td>
</tr>
<tr>
<td>30 - 64</td>
<td>1/8</td>
</tr>
</tbody>
</table>

N. Pipe Coating: Unless otherwise specified, pipe and fittings shall be coated with a 1 mil asphaltic coating as specified in ANSI/AWWA C151/A21.51.

O. Polyethylene Encasement: Ductile iron pipe shall be encased with polyethylene film where shown on the Drawings, specified or directed by the Engineer. Polyethylene film shall be as specified in Section 02616.

P. Pipe Insulation: Where a water main is exposed to the elements because the pipe is above ground, the Engineer shall determine whether the pipe is to be insulated or not. Where insulation is to be furnished and installed it shall conform to the following:

1. Insulating material shall be 3-inch thick polyurethane pipe covering formed to fit the pipe diameter.

2. Outer covering shall be 0.016-inch thick aluminum chiller jacket with moisture shield and secured with stainless steel wire or stainless steel straps.

Q. Acceptance will be on the basis of the Engineer's inspection and the manufacturer's written certification that the pipe was manufactured and tested in accordance with the applicable standards.

2.02 PIPING APPURTEANCES

A. Mechanical Joint Restraint

1. Design

 a. Restraint devices for pipe sizes 3 inches through 48 inches in diameter shall consist of multiple gripping wedges incorporated into a follower gland meeting the applicable requirements of ANSI/AWWA C110/A21.10.

 b. Restraint devices shall have a working pressure rating of 350 psi for 3-inch through 16-inch diameter pipe and 250 psi for 18-inch through 48-inch diameter pipe. Ratings shall be for water pressure and shall include a minimum safety factor of 2 to 1 for all pipe diameters.

2. Material
a. Gland body, wedges and wedge actuating components shall be cast from grade 65-45-12 ductile iron material in accordance with ASTM A536.

b. Ductile iron gripping wedges shall be contoured to fit on the pipe and shall be heat treated within a range of 370 to 470 BHN.

c. Dimensions of the glands shall be such that they can be used with the standard mechanical joint bell and tee head bolts conforming to the requirements of ANSI/AWWA C111/A21.11 and ANSI/AWWA C 153/A21.53, latest editions.

3. Approvals

a. Restraint devices shall be listed by Underwriters Laboratories (3-inch through 24-inch size) and approved by Factory Mutual (3-inch through 12-inch size).

b. Mechanical joint restraint shall be Megalug Series 1100 as manufactured by EBAA Iron Inc., Uni-Flange Series 1400, as manufactured by Ford Meter Box Company or approved equal.

B. Hydrant Connections

1. Pipe: Pipe shall have mechanical joint ends and be as specified in paragraph 2.02 of this Section.

3. Anchor Couplings:

a. Anchor couplings for hydrant installation shall be class 350 ductile iron pipe meeting the requirements of AWWA C151/ANSI A21.51, Class 53 and shall have an anchoring feature at both ends so that when used with mechanical joint split glands a restrained joint is provided.

b. Anchor couplings shall be cement lined in accordance with ANSI/AWWA C104/A21.4 and shall have a bituminous coating in accordance with ANSI/AWWA C151/A21.51.

c. Anchor couplings shall be equal to swivel anchor pipe and couplings as manufactured by Fab Pipe, Inc., Tyler Utilities Division of Union Foundry Company or approved equal.

4. Hydrant Connector Pipe:

a. Hydrant connector pipe shall be class 350 ductile iron meeting the requirements of ANSI/AWWA C153/A21.53 and shall be offset design so that the hydrant can be adjusted to ensure placement at the proper grade. Connector pipe shall have an anchoring feature at both ends so that when used with mechanical joint split glands a restrained joint is provided.

b. Hydrant connector pipe shall be cement lined in accordance with ANSI/AWWA C104/A21.4 and have a bituminous coating in accordance with ANSI/AWWA C151/A21.51.
c. Hydrant connector pipe shall be equal to the Gradelok as manufactured by Assured Flow Sales, Inc., Sarasota, Florida.

d. Hydrant connector pipe shall not be used unless specifically directed by the Engineer.

C. Tapping Saddles: Tapping saddles are not allowed.

D. Detection Tape: Detection tape shall be composed of a solid aluminum foil encased in a protective plastic jacket. Tapes shall be color coded in accordance with APWA color codes with the following legends: Water Systems, Safety Precaution Blue, “Caution Water Line Buried Below”. Colors may be solid or striped. Tape shall be permanently printed with no surface printing allowed. Tape width shall be a minimum of 2-inches when buried less than 10-inches below the surface. Tape width shall be a minimum of 3-inches when buried greater than 10-inches and less than 20-inches. Detection tape shall be equal to Lineguard Type III Detectable or Allen Systems Detectatape.

PART 3 EXECUTION

3.01 LAYING AND JOINTING PIPE AND ACCESSORIES

A. Lay all pipe and fittings to accurately conform to the lines and grades as shown on the Drawings or as established by the Engineer.

B. Pipe Installation

1. Proper equipment, tools and facilities shall be provided for the safe performance of the Work. All pipe, fittings, valves and hydrants shall be lowered carefully into the trench by means of slings, ropes or other suitable tools or equipment in such a manner as to prevent damage to water main materials and protective coatings and linings. Under no circumstances shall water main materials be dropped or dumped into the trench.

2. All pipe, fittings, valves, and other appurtenances shall be examined carefully for damage and other defects immediately before installation. Defective materials shall be marked and held for inspection by the Engineer, who may prescribe corrective repairs or reject the materials.

3. All lumps, blisters and excess coating shall be removed from the socket and plain ends of each pipe, and the outside of the plain end and the inside of the bell shall be wiped clean and dry and free from dirt, sand, grit or any foreign materials before the pipe is laid. No pipe containing dirt shall be laid.

4. Foreign material shall be prevented from entering the pipe while it is being placed in the trench. No debris, tools, clothing or other materials shall be placed in the pipe at any time.

5. As each length of pipe is placed in the trench, the joint shall be assembled and the pipe brought to correct line and grade. The pipe shall be secured in place with approved backfill material.

6. It is not mandatory to lay pipe with the bells facing the direction in which work is progressing.

7. Applying pressure to the top of the pipe, such as with a backhoe bucket, to lower the pipe to the proper elevation or grade, shall not be permitted.
8. Provide detection tape for all pipe greater than 12-inches in diameter. Detection tape shall be buried 4 to 10-inches deep. Should detection tape need to be installed deeper, the Contractor shall provide 3-inch wide tape. In no case shall detection tape be buried greater than 20-inches from the finish grade surface.

C. Alignment and Gradient

1. Lay pipe straight in alignment and gradient or follow true curves as nearly as practicable. Do not deflect any joint more than the maximum deflection recommended by the manufacturer.

2. Maintain a transit, level and accessories at the work site to lay out angles and ensure that deflection allowances are not exceeded.

D. Expediting of Work: Excavate, lay the pipe, and backfill as closely together as possible. Do not leave unjointed pipe in the trench overnight. Backfill and compact the trench as soon as possible after laying and jointing is completed. Cover the exposed end of the installed pipe each day at the close of work and at all other times when work is not in progress. If necessary to backfill over the end of an uncompleted pipe or accessory, close the end with a suitable plug, either push-on, mechanical joint, restrained joint or as approved by the Engineer.

E. Joint Assembly

1. Push-on, mechanical, flange and restrained type joints shall be assembled in accordance with the manufacturer's recommendations.

2. The Contractor shall inspect each pipe joint within 1,000 feet on either side of main line valves to insure 100 percent seating of the pipe spigot, except as noted otherwise.

3. Each restrained joint shall be inspected by the Contractor to ensure that it has been “homed” 100 percent.

4. The Contractor shall internally inspect each pipe joint to insure proper assembly for pipe 24-inches in diameter and larger after the pipe has been brought to final alignment.

F. Cutting Pipe: The Contractor shall cut the pipe and bevel the end, as necessary, to provide the correct length of pipe necessary for installing the fittings, valves, accessories and closure pieces in the correct location. Only push-on or mechanical joint pipe shall be cut. Cement lining shall be undamaged.

G. Polyethylene Encasement: Installation shall be in accordance with ANSI/AWWA C105/A21.5 and the manufacturer's instructions. All ends shall be securely closed with tape and all damaged areas shall be completely repaired to the satisfaction of the Engineer.

3.02 CONNECTIONS TO WATER MAINS

A. Make connections to existing pipe lines with tapping sleeves and valves, unless specifically shown otherwise on the Drawings.

B. Location: Before laying pipe, locate the points of connection to existing water mains and uncover as necessary for the Engineer to confirm the nature of the connection to be made.
C. Interruption of Services: Make connections to existing water mains only when system operations permit and only when notices are issued to the customer. The Contractor will operate existing valves only with the specific authorization and direct supervision of the Owner.

D. Tapping Sleeves

1. Holes in the new pipe shall be machine cut, either in the field or at the factory. No torch cutting of holes shall be permitted.

2. Prior to attaching sleeve, the pipe shall be thoroughly cleaned utilizing a brush and rag as required.

3. Before performing field machine cut, the watertightness of the sleeve assembly shall be pressure tested. The interior of the assembly shall be filled with water. An air compressor shall be attached, which will induce a test pressure as specified in this Section. No leakage shall be permitted for a period of five minutes.

4. After attaching the sleeve to an existing main, but prior to making the tap, the interior of the assembly shall be disinfected. All surfaces to be exposed to potable water shall be swabbed or sprayed with a one percent hypochlorite solution.

E. Connections using Solid Sleeves: Where connections are shown on the Drawings using solid sleeves, the Contractor shall furnish materials and labor necessary to make the connection to the pipe line including cutting, excavation and backfill.

F. Connections Using Couplings: Where connections are shown on the Drawings using couplings, the Contractor shall furnish materials and labor necessary to make the connection to the existing pipe line, including all necessary cutting, excavation and backfill.

3.03 THRUST RESTRAINT

A. Provide restraint at all points where hydraulic thrust may develop.

B. Retainer Glands: Provide retainer glands where shown on the Drawings. Retainer glands shall be installed in accordance with the manufacturer’s recommendations, particularly, the required torque of the set screws. The Contractor shall furnish a torque wrench to verify the torque on all set screws which do not have inherent torque indicators.

C. Harnessing

1. Provide harness rods only where specifically shown on the Drawings or directed by the Engineer.

2. Harness rods shall be manufactured in accordance with ASTM A36 and shall have an allowable tensile stress of no less than 22,000 psi. Harness rods shall be hot dip galvanized or field coated with bitumastic before backfilling.

3. Where possible, harness rods shall be installed through the mechanical joint bolt holes. Where it is not possible, provide 90-degree bend eye bolts.
4. Eye bolts shall be of the same diameter as specified in ANSI/AWWA C111/A21.11 for that pipe size. The eye shall be welded closed. Where eye bolts are used in conjunction with harness rods, an appropriate size washer shall be utilized with a nut on each end of the harness rod. Eye bolts shall be of the same material and coating as the harness rods.

D. Thrust Collars: Collars shall be constructed as shown on the Drawings.

E. Concrete Blocking

 1. Provide concrete blocking for all bends, tees, valves, and other points where thrust may develop, except where other exclusive means of thrust restraint are specifically shown on the Drawings.

 2. Concrete shall be as specified in Section 03301, Concrete and Reinforcing Steel.

 3. Form and pour concrete blocking at fittings as shown on the Drawings and as directed by the Engineer. Pour blocking against undisturbed earth. Increase dimensions when required by over excavation.

3.04 INSPECTION AND TESTING

A. All sections of the water main shall be hydrostatically pressure tested in accordance with AWWA C600 and these Specifications. A section of main will be considered ready for testing after completion of all thrust restraint and backfilling.

B. Water used for flushing and testing mains and other construction purposes will be made available to the Contractor as specified in Section 01040.

C. Each segment of newly installed water main between main valves shall be tested individually in the presence of the project engineer or inspector.

D. Test Preparation

 1. For water mains less than 24-inches in diameter, flush sections thoroughly at flow velocities, greater than 2.5 feet per second, adequate to remove debris from pipe and valve seats. For water mains 24-inches in diameter and larger, the main shall be carefully swept clean, and mopped if directed by the Engineer. Partially open valves to allow the water to flush the valve seat.

 2. Partially operate valves and hydrants to clean out seats.

 3. Provide temporary blocking, bulkheads, flanges and plugs as necessary, to assure all new pipe, valves and appurtenances will be pressure tested.

 4. Before applying test pressure, air shall be completely expelled from the pipeline and all appurtenances. Insert corporation stops at high points to expel air as main is filled with water as necessary to supplement automatic air valves. Corporation stops shall be constructed with a meter box as shown on the Drawings.

 5. Fill pipeline slowly with water. Provide a suitable pump with an accurate water meter to pump the line to the specified pressure.
6. The differential pressure across a valve or hydrant shall equal the maximum possible, but not exceed the rated working pressure. Where necessary, provide temporary backpressure to meet the differential pressure restrictions.

7. Valves shall not be operated in either the opening or closing direction at differential pressures above the rated pressure.

E. Test Pressure: Test the pipeline at 250 psi measured at the lowest point for at least two hours. Maintain the test pressure within 5 psi of the specified test pressure for the test duration. Should the pressure drop more than 5 psi at any time during the test period, the pressure shall be restored to the specified test pressure. Provide an accurate pressure gauge with graduation not greater than 5 psi.

F. Testing Allowance

5. Testing allowance shall be defined as the sum of the maximum quantity of makeup water that must be added into the pipeline undergoing hydrostatic pressure testing, or any valved section, in order to maintain pressure within 5 psi of the specified test pressure for the test duration plus water required to return line to test pressure at the end of the test. Leakage shall be the total cumulative amount measured on a water meter.

6. The Owner assumes no responsibility for leakage occurring through existing valves.

G. Test Results: No installed pipe shall be accepted if the quantity of makeup water exceeds the limits determined by the following formula:

\[L = \frac{SD (P)^{1/2}}{148,000} \]

Where:
- \(L \) = allowable leakage, in gallons per hour
- \(S \) = length of pipe tested, in feet
- \(D \) = nominal diameter of the pipe, in inches
- \(P \) = average test pressure during the hydrostatic test, in pounds per square inch (gauge)

As determined under Section 5 of ANSI/AWWA C600.

H. If the water main section being tested contains lengths of various pipe diameters, the allowable leakage shall be the sum of the computed leakage for each diameter. The leakage test shall be repeated until the test section is accepted. All visible leaks shall be repaired regardless of leakage test results.

I. After a pipeline section has been accepted, relieve test pressure. Record type, size and location of all outlets on record drawings.

J. At the conclusion of the work, the Contractor shall thoroughly clean all new pipelines by flushing with water or other means to remove all dirt, stone, pieces of wood or other material which may have entered the pipeline during the construction period.

K. The Contractor shall be responsible for legal disposal of all water used for flushing and testing.
L. A written copy of the test results with the observed allowable leakage confirmed by the project inspector shall be provided to the city through coordination and written correspondence with the County.

+ + + END OF SECTION 02665 + + +
SECTION 02668
WATER SERVICE CONNECTIONS

PART I GENERAL

1.01 SCOPE

A. Furnish all labor, materials, equipment and incidentals required for installing and testing water service connections complete as shown on the Drawings and as specified herein.

B. The work of this Section is limited to water service connections 2-inches in diameter and smaller and may include all or some of the following:

1. The installation of new water service connections from new and existing water mains.
2. The transfer of existing service connections from existing water mains to new water mains.
3. Installing meter boxes and lids for service lines up to 1-inch.
4. Furnishing and installing meter boxes for 1½-inch and 2-inch service lines.

C. Water meters shall not be furnished or installed. However, the water meter connections must be compatible with the water meters currently in use by the water utility.

D. No galvanized pipe or fittings shall be used on water services.

E. Definitions:

1. Long side connection: A long side connection is a connection done with the meter on the opposite side of the street as the water main.

2. Short side connection: A short side connection is a connection done with the meter on the same side of the street as the water main.

1.02 SERVICE COMPATIBILITY

A. All water service connections shall duplicate those presently in use by the Owner in order to insure service compatibility with their service maintenance procedures.

1.03 QUALITY ASSURANCE

A. Reference Standards: The design, manufacturing and assembly of elements of the products herein specified shall comply with the applicable provisions and recommendations of the latest editions of the following standards, except as otherwise shown on the Drawings or otherwise specified.

1. ANSI/AWWA C800 – Underground Service Line Valves and Fittings

2. ASTM B88 – Standard Specification for Seamless Copper Water Tube

3. NSF/ANSI Standard 61 – Drinking Water System Components – Health Effects
1.04 MATERIAL TO BE FURNISHED BY THE OWNER

A. The Owner will furnish the following materials to the Contractor for installation under this Contract:

1. Oval cast iron meter boxes with lids for installation with ¾-inch and 1-inch meters.

2. Rectangular cast iron meter box lids and frames for installation with 1 ½-inch and 2-inch meters.

3. The Owner will not supply meter boxes for 1 ½-inch and 2-inch meter installations.

B. Refer to Standard Details as shown on the Drawings

PART 2 PRODUCTS

2.01 MATERIALS

A. Meter Boxes for 1 1/2-inch and 2-inch service lines: Meter boxes for 1 1/2-inch and 2-inch service lines shall be constructed of concrete masonry units as specified in Section 04000, Masonry, concrete as specified in Section 03301, Concrete and Reinforcing Steel or precast concrete.

B. Service Line

1. Service line shall be copper tubing. Tubing shall be Type K, rolled type, conforming to ASTM B88.

2. Fittings shall be cast copper alloy with compression type inlet and outlet connections.

3. Where required, adapters shall be brass.

C. Valves and Accessories

1. Ball Valves

 a. Ball valves shall be full port, heavy duty type and shall seal full rated pressure with flow in either direction.

 b. Valve body shall be bronze conforming to ASTM B62, with threaded ends. End connections shall be compression type for type K copper tubing and shall be furnished with meter swivel nuts, with meter gasket, for 5/8-inch through 1-inch meter connections and flanged end for 1 ½-inch and 2-inch meter connections.

 c. Valves shall have a maximum water pressure rating of 300 psi.

 d. Valves shall have a maximum water temperature rating of 180 degrees F.

 e. Valves shall be Mueller 300 ball valves or approved equal.

2. Corporation Stops
a. Corporation stops shall be ball type and shall be made of bronze conforming to ASTM B62.

b. Corporation stops shall be suitable for a maximum water pressure rating of 300 psi.

c. Inlet shall be tapered thread conforming to AWWA C800.

d. Outlet connection shall be threaded for compression type connection for type K copper tubing.

e. Corporation stop shall be model B-25008 as manufactured by Mueller Company or model 3128B as manufactured by A.Y. McDonald Manufacturing Co. or approved equal.

3. Curb Stops

a. Curb stops shall be ball type and shall be made of bronze conforming to ASTM B62.

b. Curb stops shall be suitable for a maximum water pressure rating of 300 psi.

c. Inlet connection shall be threaded for compression type connection for type K copper tubing. Outlet shall be furnished with a threaded meter swivel nut, with meter gasket, or flanged to match size of meter.

d. Ball valve shall be brass and shall seat watertight with flow in either direction.

e. Curb stop shall be furnished with padlock ring for locking valve in closed position.

f. Curb stop shall be model B-25172 as manufactured by Mueller Company or model 6100W as manufactured by A.Y. McDonald Manufacturing Co. or approved equal.

4. Service Fittings and Couplings: Service fittings and couplings shall conform to the requirements of AWWA C800.

PART 3 EXECUTION

3.01 GENERAL

A. Following pressure testing and disinfection of the water main and when directed by the Engineer, the Contractor shall install water taps for each service connection. All taps shall remain exposed at the main until the service line has been inspected, tested for pressure and disinfected.

B. Locations of taps shall be as directed by the Engineer along the route of the water main.

C. Installation of water service connections shall conform to the details shown on the Drawings.

D. The Contractor shall be prepared to make emergency repairs to the water main, if necessary, due to damage caused by the Contractor’s operations. In conjunction with this requirement, the Contractor shall furnish and have available at all times, a tapping machine, for the purpose of making temporary water service taps or emergency repairs to damaged water services. The Contractor shall furnish the Engineer a phone number of an individual with the authority to
initiate emergency repair work. The phone number shall be provided prior to starting work on the Project.

3.02 TAPPING WATER MAIN

A. All services connected to water main shall be through a direct tap.

B. The water main shall be tapped with a tapping machine specifically designed for that purpose. The tap shall be a direct tap into the water main through a corporation stop. All taps shall be supervised by the Engineer. All taps shall be made on the water main at a position so as not to be on the top of the water main or on the bottom of the water main.

C. The distance between taps shall be a minimum of 12-inches.

3.03 METER BOXES

A. Oval cast iron meter boxes with lids for installation with ¾-inch and 1-inch meters shall be furnished by the Owner as specified in Paragraph 1.04 of this Section.

B. Rectangular cast iron meter box lids and frames for installation with 1 ½-inch and 2-inch meters shall be furnished by the Owner as specified in paragraph 1.04 of this Section. Meter boxes for 1 1/2-inch and 2-inch meters shall be furnished and installed by the Contractor.

C. Meter boxes shall be installed by the Contractor in the locations as shown on the Drawings or as directed in the field by the Engineer.

D. Meter box installation shall include valves, fittings and accessories to allow for future installation of meter and backflow preventer by the water utility.

E. Meter boxes shall be located perpendicular to the curb. The street edge of the box shall be located 18-inches (maximum) behind the back of the curb and the meter lid shall be set at finished grade. The meter box shall be set on a bed of gravel. The gravel shall be 3-inches thick and extend 6-inches in all directions beyond the edge of the meter box.

3.04 SERVICE LINES

A. Copper tubing between tap and water meter shall be one continuous length of pipe with no intermediate joints or connections. The service line shall be placed without sharp turns or bends from the water main to the meter box.

B. Size of new service connections shall as directed by the Engineer or as shown on the Drawings.

C. New copper service lines shall be installed by free bore without a casing.

3.05 TRANSFER OF SERVICE

A. All service lines to be replaced or transferred shall be the same size as existed prior to construction.

B. As shown schematically on the Drawings, new service lines shall be installed between the new main and the existing meter. If a new service line or the existing meter connection or fitting is
damaged during construction, it shall be abandoned and a new copper service line and meter connection and fitting will be installed at the Contractor’s expense.

C. To minimize out of service time, the Contractor shall determine the connections to be made and have all the required pipe and fittings on hand before shutting off the existing service. After completing the connection, the new corporation cock shall be opened and all visible leaks shall be repaired and approved by the Engineer.

D. Immediately before connecting to the existing meter, all service lines shall be flushed to remove any foreign matter. Any special fittings required to reconnect the existing meter to the new copper service line shall be provided by the Contractor.

E. The existing service lines shall be abandoned in place at the corporation stop unless directed by the Engineer.

3.06 RELOCATION OF EXISTING METERS AND METER BOXES

A. Before disconnecting the existing meter, the existing corporation stop in the main shall be closed. All existing meters and meter boxes shall be removed, reinstalled and reconnected as indicated on the Drawings and as directed by the Engineer.

B. Existing service lines shall be field located by the Contractor. The Contractor shall be responsible for locating existing meters and meter boxes, relocating the meters and meter boxes as directed by the Engineer and determining the existing size service line to reconnect the meters to the water mains. All service lines installed under existing pavement, including streets, driveways and sidewalks, shall be installed by free bore.

C. The Contractor shall relocate the existing meter box and meter and reconnect the house service. Refer to paragraph 3.04A of this Section.

3.07 MAINTENANCE AND REPAIRS

A. The tap and service line shall remain under Contractor’s maintenance responsibility for the same warranty period as the water main. The Contractor shall promptly repair any damage to the water main and service line during the warranty period.
SECTION 02675
DISINFECTION OF WATER MAINS

PART 1 GENERAL

1.01 SCOPE

A. The work covered by this Section includes furnishing all labor, equipment, materials, chemicals and incidentals required to disinfect all water mains installed under this contract in accordance with the procedures specified herein and as directed by the Engineer.

1.02 QUALITY ASSURANCE

A. Reference Standards: Procedures for disinfecting water mains unless otherwise modified herein, shall conform to the requirements of AWWA Standard C651, Disinfecting Water Mains.

1.03 SUBMITTALS

A. Submittals shall be made in accordance with the requirements of the General Conditions of the Contract Documents. In addition, the following specific information shall be provided:

1. Disinfection shall be performed by an approved specialty contractor. Before disinfection is performed, the Contractor shall submit a written pipeline disinfection procedure for approval before being permitted to proceed with the disinfection. The plan shall also include the steps to be taken for the neutralization of the chlorinated water.

2. In addition, for mains 24-inches in diameter and larger, the Contractor shall submit the resume of a Disinfection Supervisor. The Disinfection Supervisor shall have demonstrated prior disinfection experience with at least 10 miles of 24-inch diameter or greater water transmission mains in the state of Georgia. Approval of the Disinfection Supervisor shall also include a 1 hour interview with the Owner.

PART 2 PRODUCTS

2.01 DISINFECTION AGENT

A. The disinfection agent shall be free chlorine or chlorine compound.

PART 3 EXECUTION

3.01 DISINFECTION OF PIPELINE

A. After successfully pressure testing each pipeline section, disinfect in accordance with AWWA C651 for the continuous-feed method and these Specifications.

B. Chlorination:

1. Contractor shall meet the disinfection requirements of the current version of the Georgia Environmental Protection Division, Drinking Water Permitting & Engineering Program,
Minimum Standards for Public Water Systems, or the requirements below, whichever are more stringent.

2. Contractor shall apply chlorine solution to achieve a concentration of at least 25 milligrams per liter free chlorine in new line. Retain chlorinated water for 24 hours. Water shall be supplied from a temporary source protected by appropriate backflow prevention devices. Backflow preventer must be approved by the Owner prior to connection. Chlorine shall be injected no more than 10 feet from the beginning of the new main.

3. Chlorine concentration shall be recorded at every outlet along the line at the beginning and end of the 24-hour period.

4. After 24 hours, all samples of water shall contain at least 10 milligrams per liter free chlorine. Re-chlorinate if required results are not obtained on all samples.

5. Final pipeline disinfection shall occur at the end of the construction period immediately prior to putting the main in service.

6. Main disinfection shall be performed and evaluated in sequential and contiguous pipe sections between in-line valves.

C. Disposal of Chlorinated Water: Reduce chlorine residual of disinfected water to less than 1 milligram per liter if discharged directly to a body of water or to less than 2 milligrams per liter if discharged onto ground prior to disposal. Treat water with sulfur dioxide or other reducing chemicals to neutralize the chlorine residual. Flush all lines until residual is equal to existing system. Contractor shall be responsible for any state or local permits required for the disposal of flushing water.

D. Bacteriological Testing: After final flushing and before the water main is placed in service, the Owner shall collect samples from the main and deliver them to the Owner’s designated laboratory for bacteriological testing. One set of samples shall be collected from every 1,200 feet of water main, plus one set from each end of main. Testing shall be performed by the Owner’s water laboratory. If test results are not satisfactory, the Contractor shall re-chlorinate the mains until required results are obtained.

++ + END OF SECTION 02675 + + +
SECTION 03301
CONCRETE AND REINFORCING STEEL

PART 1 GENERAL

1.01 SCOPE

A. Contractor shall furnish all labor, materials, equipment and incidentals required to complete all cast-in-place concrete work as shown on the Drawings and as specified herein.

B. Cast-in-place concrete shall be required for the following:

1. Slabs
2. Channels
3. Curb and gutters
4. Sidewalks
5. Thrust Blocks
6. Pipe encasement
7. Miscellaneous structures

1.02 SUBMITTALS

A. Submittals shall be made in accordance with the requirements of the General Conditions of the Contract Documents. In addition, the following specific information shall be provided:

1. Product data for all materials stating the location where product is to be used.
2. Certification that materials meet the specifications.
3. Manufacturer's application and installation instructions.
4. Samples of waterstops, concrete roughener, joint fillers, caulk and bonding agent.

B. Drawings and reinforcing schedules showing completed bending and placing details shall be submitted to the Engineer for approval as detailed in the General Conditions. No steel shall be fabricated until the drawings have been approved.

C. If ready-mixed concrete is to be used, the manufacturer shall submit design mix for approval. Design mix shall indicate the dry proportions to be used, with evidence that these proportions will produce concrete of the quality specified.

1.03 QUALITY ASSURANCE
A. Reference Standards: The Contractor shall comply with applicable provisions and recommendations of the latest editions of the following standards, except as otherwise shown on the Drawings or specified herein.

1. ACI 301 - Specifications for Structural Concrete, Chapter 6, Joints and Embedded Items.
2. ACI 305 – Hot Weather Concreting.
3. ACI 306 – Cold Weather Concreting.
4. ACI 347 – Guide to Formwork for Concrete
5. ACI 350 - Environmental Engineering Concrete Structures, Chapter 2.8, Joints.
6. ASTM A185 – Standard Specification for Steel Welded Wire Reinforcement, Plain, for Concrete
13. ASTM D1752 - Preformed Expansion Joint Fillers for Concrete Paving and Structural Construction.

B. All manufactured items shall be installed in accordance with manufacturer's instructions.

C. Construction and expansion joints shall not be added or relocated without the approval of the Engineer.

PART 2 PRODUCTS

2.01 FORMS

A. Forms shall be free from roughness and imperfections and adequately braced and tied to prevent movement when concrete is placed. Wooden spreaders shall not be allowed in the concrete.

B. Wire ties shall not be allowed. Metal ties or anchorages which are required in the forms shall be so constructed that the metal work can be removed for a depth of at least 1-inch from the surface of the concrete without injury to such surface by spalling or otherwise. Forms shall be thoroughly cleaned before using and shall be treated with oil or other approved materials.

2.02 MATERIALS
A. Ready-Mixed Concrete:

1. Truck-mixed, ready-mixed concrete shall conform to ASTM Designation C94 and the requirements herein, or as otherwise approved by the Engineer.

2. Each load of ready-mixed concrete delivered to the job site shall be accompanied by a delivery ticket. Ticket shall show all information to substantiate pre-approved design mix.

B. Cement shall be domestic Portland cement conforming to ASTM Designation C150, Type II.

C. Aggregates

1. General
 a. Fine and course aggregates shall conform to ASTM C33 and shall be tested in accordance with ASTM C136, Aggregates shall be washed before use.
 b. When sources of aggregates are changed, test reports shall be provided for the new material. The tests shall be performed prior to commencing concrete work.

2. Coarse Aggregate: Coarse aggregate shall be hard, dense and durable gravel or crushed rock free from injurious amounts of soft and friable particles, alkali, organic matter and other deleterious substances. Gradation shall conform to ASTM C33.

3. Fine Aggregate: Fine aggregate shall be hard dense durable particles of either sand or crushed stone graded from course to fine and shall conform to ASTM C33.

D. Reinforcing steel shall be steel bars conforming to ASTM A615, Grade 60. Reinforcing steel shall be free from rust, scale, dirt grease and injurious contaminants. Rail steel bars shall not be permitted in the Work.

E. Welded wire fabric shall conform to ASTM A185.

F. Water for washing aggregate, for mixing and for curing shall be potable, clean and free from deleterious amounts of acids, alkalis, oils and organic materials.

G. Waterstops shall be PVC (polyvinylchloride) meeting ASTM D638 test method for tensile strength of 2020 psi and ultimate elongation of 370.

1. Construction Joints:
 a. Serrated with center bulb, 3/8-inch thick by 6-inches minimum width, Greenstreak #706 or equal.
 b. Preformed plastic adhesive waterstop, Synko-Flex Products or approved equal. Use only where shown on the Drawings.

2. Expansion Joints: Serrated with center bulb, 3/8-inch thick by 9-inch minimum width, Greenstreak #738 or equal.
2.03 CONCRETE QUALITY

A. Unless otherwise specified or directed by the Engineer, concrete shall be designed for a minimum compressive strength of 3,000 psi at 28 days.

B. Concrete for encasements and fill shall have a minimum compressive strength of 1,500 psi at 28 days.

2.04 CONCRETE ADMIXTURES

A. Admixtures shall not be used unless approved by the Engineer.

B. Do not use calcium chloride in concrete unless approved by the Engineer.

C. Do not use a retarder in the concrete, unless approved by the Engineer.

2.05 CONCRETE CURING MATERIALS

A. Absorptive Cover: Burlap cloth made from jute or kenaf, weighing approximately 10 ounces per square yard and complying with AASHTO M182, Class 3.

B. Moisture-Retaining Cover shall conform to ASTM C171 and shall be:
 1. Waterproof paper.
 2. 4 mil polyethylene.

C. Curing and Sealing Compound shall conform to ASTM C309 and shall be:
 1. Res-X curing compound as manufactured by the Burke Company.
 2. Masterkure as manufactured by Master Builders Company.
 3. Concrete Curing Compounds as manufactured by W. R. Meadows, Inc.
 4. Or approved equal.

PART 3 EXECUTION

3.01 FORM WORK

A. Form work shall be installed in accordance with ACI 347.

3.02 REINFORCEMENT

A. Reinforcement shall be shipped to the site with bars of the same size and shape fastened in bundles with metal identification tags giving size and mark securely wired on. The identification tags shall be labeled with the same designation as shown on the submitted bar schedules and shop drawings.
B. All bars shall be stored off the ground and shall be protected from moisture and kept free from dirt, oil or other injurious coatings.

C. Reinforcement, where required, shall be accurately placed in exact positions as shown on the Drawings and shall be secured against displacement with annealed wire ties or suitable clips at intersections and shall have a clear space of 2-inches between the steel and the face of forms unless otherwise indicated.

D. Wire ties passing through the forms for the purpose of holding the steel in proper position will not be allowed. Concrete blocks with wire ties cast therein may be used if approved by the Engineer for the purpose of maintaining and clearance between the reinforcement and the forms.

E. Metal chairs shall not be used to support unit reinforcing in slabs. Instead, all reinforcing shall be supported on precast concrete blocks of the correct height. Supporting steel by means of cinder blocks or concrete building blocks will not be permitted.

F. Unless otherwise shown, splices in reinforcement shall be lapped not less than 24 diameters. All bar splices shall be staggered whenever possible. When splicing bars of different diameters, the length of the lap shall be based on the larger bar.

G. Before being placed in position, reinforcement shall be thoroughly cleaned of all loose mill and rust scale, dirt and other coatings, including ice, that reduce or destroy bond. Where there is delay in depositing concrete after reinforcement is in place, bars shall be reinspected and cleaned when necessary.

H. In no case shall any reinforcing steel be covered with concrete until the amount and position of the reinforcement have been checked by the Engineer and his permission given to proceed with the concreting.

3.03 MIXING CONCRETE

A. Concrete shall be mixed until there is a uniform distribution of the materials and shall be discharged completely before the mixer is recharged. The mixer shall be rotated at a speed recommended by the mixer manufacturer and mixing shall be continued for at least 1-1/2 minutes after all materials are in the mixer. Concrete shall be placed within 1 ½ hours of the time at which water was first added, otherwise it shall be rejected. Concrete which has been remixed or retempered or to which an excess amount of water has been added shall also be rejected.

B. Adding water in controlled amounts during the mixing cycle shall be done only under the direction of the Engineer.

3.04 PLACING CONCRETE

A. Concrete shall not be placed until forms and method of placement have been approved by the Engineer. Before depositing concrete, all debris, foreign matter dirt and water shall be removed from the forms. The surface of concrete previously placed such as a manhole base or horizontal construction joint shall be cleaned and brushed with cement paste. Concrete shall not be placed in water or submerged within 24 hours after placing, nor shall running water be permitted to flow over the surface of fresh concrete within 4 hours after its placing.
B. High frequency mechanical vibrations shall be used as necessary to obtain consolidation of the concrete. Care shall be taken to avoid segregation of the aggregates by excessive vibration. Concrete adjacent to forms, reinforcing rods and around pipe stubs shall be carefully spaded or rodded.

C. Placing Concrete in Hot Weather: In hot weather (above 85 degrees F), concrete shall be placed in accordance with ACI 305.

D. Placing Concrete in Cold Weather: In cold weather (below 45 degrees F), concrete shall be placed in accordance with ACI 306.

E. At the base of walls in manholes where construction joints are used, install waterstops.

3.05 WATERSTOPS

A. Waterstops for all joints shall be continuous around all corners and intersections. Splices shall be made by welding in accordance with the manufacturer’s recommendations, subject to the approval of the Engineer.

B. Drill holes in waterstops, just below the bulb and tie waterstops to reinforcing steel with steel tying wire as specified in this section.

C. A sufficient number of ties shall be placed, as directed by the Engineer, to ensure that waterstops will remain in the required position during concrete placement.

3.06 CONCRETE CRADLES, ARCHES AND ENCASEMENTS

A. Concrete cradles, arches and encasements shall be placed as shown on the Drawings and as directed by the Engineer. Backfill shall not be placed on the concrete until directed by the Engineer.

B. Control joints shall be incorporated into the concrete as shown on the Drawings.

C. The pipe shall be securely braced both vertically and horizontally to restrain it against flotation while pouring the concrete. Holes left in the concrete by cross braces during the pouring shall be completely filled with concrete as directed by the Engineer.

3.07 FINISH

A. Float finish shall be applied to surfaces of manhole inverts and shall conform to ACI 301. Floating shall be performed with a hand or power driven float. Floating shall compact and smooth the surface and close any cracks and checking of surfaces.

3.08 CURING AND SEALING

A. Concrete curing shall be completed by water curing or using a curing and sealing compound or by a combination of both methods. Repairs or treatment of concrete surfaces shall be coordinated so that interruption of the curing will not be necessary.
3.09 PROTECTION

A. Concrete shall be protected from injurious action by sun, rain, flowing water, frost and mechanical injury.

3.10 REMOVAL OF FORMS

A. Forms shall not be removed without the approval of the Engineer. With an average temperature of 50 degrees F or higher, inside forms shall be retained for at least 48 hours and outside forms for at least 24 hours. With lower temperatures, forms shall be retained one day longer.

++ + END OF SECTION 03301 + + +
PART 1 GENERAL

1.01 SCOPE

A. Furnish all labor, materials, equipment and incidentals required to construct all masonry work as shown on the Drawings and specified herein.

B. The work under this Section includes, but is not necessarily limited to, the following:

1. Concrete masonry units (CMU)
2. Common brick for back up work
3. Masonry reinforcing, ties and anchors
4. Patching existing brick masonry removed or damaged during construction
5. Grouting required throughout the project

1.02 SUBMITTALS

A. Submit two samples each of concrete masonry units.

B. Masonry Mortar: Submit manufacturer’s specifications and Instructions for each manufactured product. Indicate that a copy of each applicable instruction has been distributed to the Masonry Installer if other than the Contractor.

1.03 QUALITY ASSURANCE

A. Reference Standards: The Contractor shall comply with the applicable provisions and recommendations of the latest editions of the following standards except as otherwise shown on the Drawings or specified herein.

2. ASTM C90 – Standard Specification for Load Bearing Concrete Masonry Units.
3. ASTM C140 – Standard Test Methods for Sampling and Testing Concrete Masonry Units and Related Units.

11. NCMA – National Concrete Masonry Association.

B. (Not Used)

1.04 PRODUCT DELIVERY, STORAGE AND HANDLING

A. All perishable materials for the work of this Section shall be delivered, stored, and handled so as to preclude damage of any nature. Manufactured materials, such as cement and lime, shall be delivered and stored in their original containers, plainly marked with identification of material and maker. Materials in broken containers, or in packages showing water marks or other evidence of damage, shall not be used and shall be removed from the site.

B. All masonry shall be shipped, stacked with hay or straw protection or other suitable protective device, and shall be similarly stacked off the ground on the site. In addition, all masonry stored on the site shall be protected from the weather and staining with the use of tarpaulins or other covering approved by the Engineer.

C. Mason’s sand shall be protected during shipping, storage and while on the job site to prevent contamination.

1.05 COLD WEATHER CONSTRUCTION

A. Masonry construction in cold weather shall conform to the applicable requirements of “Cold Weather Concrete Masonry” of the National Concrete Masonry Association (NCMA).

B. (Not Used)

1.06 WARRANTY

A. Provide a warranty against defective equipment and workmanship in accordance with the requirements of the General Conditions of the Contract Documents.

B. (Not Used)

PART 2 PRODUCTS

2.01 MATERIALS

A. Concrete Masonry Units:

1. Concrete masonry units (CMU) shall conform to ASTM C90, light weight, Grade N, Type I, hollow, load bearing units of 8-inch x 16-inch nominal face size. All exposed vertical corners shall be bull nosed.
2. CMU shall be free from substances that will cause staining or pop-outs, and shall be fine, even texture with straight and true edges. All units shall have been cured in an autoclave in an atmosphere steam at a pressure and temperature of approximately 150 psig. and 360 deg. F. Units shall have a maximum linear drying shrinkage of 0.25 percent (ASTM C426) and have a moisture content of time of delivery not exceeding 30 percent of total absorption.

3. Units shall be obtained from one manufacturer to insure even color and texture.

B. Brick:

1. Common brick shall conform to the requirements of ASTM C62.

2. (Not Used)

2.02 REINFORCING, TIES, ANCHORS AND MISCELLANEOUS

A. Wire joint reinforcement shall be welded wire units prefabricated in straight lengths of not less than 10 ft. with matching corner and tee units fabricated from cold-drawn steel wire complying with ASTM A82, with deformed continuous side rods and plain cross-rods, crimped for cavity wall construction.

B. Single wythe reinforcement shall be truss type, fabricated with single pair of galvanized 9-gauge side rods and continuous 9-gauge diagonal cross-rods spaced not more than 16 -inch O.C.

C. Reinforcing designated No. 3 and larger shall be deformed steel bars as specified in Section 03301.

D. The Contractor shall provide and install miscellaneous anchors and attachment members, required both for the anchorage of his own work and that of other trades requiring attachment to masonry, which are not specifically provided under separate sections.

E. Cleaning compound shall be mild, non-caustic detergent solution such as 801 Super Real Clean by Superior Manufacturing Co., or 600 Sureclean by Process Solvent Co., Inc., or equal.

2.03 MORTAR MATERIALS

A. Portland cement shall conform to ASTM C150 Type II.

B. Lime for masonry mortar shall be hydrated, conforming to ASTM C207, Type S.

C. Sand shall be clean, durable particles, free from injurious amounts of organic matter. The sand shall conform to the limits of ASTM C144. Sand for grout shall conform to ASTM C144 or C33 as required.

D. Water shall be free from injurious amounts of oils, acids, alkalis or organic matter, and shall be clean and fresh.

E. Mortar shall conform to ASTM C270, Type S, consisting of 1 part portland cement, 1/2-part lime, 4-1/2 parts sand, or as otherwise approved by the Engineer. Ingredients shall be accurately
2.04 GROUT MATERIALS

A. Grout for CMU course and cells shall be the course type in conformance with ASTM C476.

B. Aggregates for grout, except non-shrink grout, shall consist of inert natural sand and course aggregate in conformance with ASTM C404.

C. Cement, lime and water shall be as specified above for mortar materials.

D. Grout for setting bearing plates, machinery, or any other equipment shall be mixed as recommended by the manufacturer to give the necessary consistency for placing and to give a minimum compressive strength of three thousand lbs. per square inch in three days.

E. All other grout shall be one part portland cement and one part sand.

F. Non-shrink grout shall utilize Embeco Aggregates as manufactured by the Master Builders Company, Ferrolith by Sonneborn, or equal and be proportioned with sand in strict accordance with the manufacturer's instructions for the use intended.

PART 3 EXECUTION

3.01 MORTAR AND GROUT

A. Mortar shall be machine mixed in an approved type of mixer in which the quantity of water can be accurately and uniformly controlled. The mixing time shall not be less than five minutes, approximately two minutes of which shall be used for mixing the dry materials and not less than three minutes for continuing the mixing after the water has been added. Where hydrated lime is used for mortar requiring a lime content, the contractor will have the option of using the dry-mix method or first converting the hydrated lime into a putty.

B. Where the dry-mix method is employed, the materials for each batch shall be well turned over together until the even color of the mixed, dry materials indicates that the cementitious material has been thoroughly distributed throughout the mass, after which the water shall be gradually added until a thoroughly mixed mortar of the required plasticity is obtained.

C. Mortar boxes shall be cleaned out at the end of each day's work, and all tools shall be kept clean. Mortar that has begun to set shall not be used.

D. Grout for CMU courses and cells shall be machine mixed in an approved type of mixer. All cementitious materials shall be mixed for a minimum period of five minutes, after all materials are placed in the mixer, with the amount of water to produce a minimum eight-inch slump.

3.02 MASONRY INSTALLATION

A. No material which is frozen or covered with frost or snow shall be used in the construction, and no antifreeze salts or ingredients shall be mixed with the mortar. Masonry shall not be laid at temperatures below forty degree F and all work shall be done in such a manner as to insure the proper and normal hardening of all mortar. All masonry work shall be so protected and heated
that the temperature at the surface will not fall below fifty degrees F for a period of seventy-two hours after placing. Any completed work found to be affected by freezing shall be taken down and rebuilt by the Contractor at his expense.

B. All bricks shall be laid in full beds of mortar with shoved joints and with all joints slushed solidly in each course. Bond shall be common bond. Brick with more than eight percent absorption shall be damp when laid, except in freezing weather. All brickwork shall be laid up from an outside scaffold and shall be carried up simultaneously at an approximate level. No brick shall be laid overhand. Face bricks receiving minor handling defects shall be used in nonconspicuous surfaces. Distribution of light and dark bricks shall be as even as possible.

C. All CMU shall be laid in a full mortar bedding applied to the entire horizontal face of the masonry unit. Butter the vertical joint of unit already set in the wall and all contact faces of the unit to be set. Each unit shall be placed and shoved against the unit previously laid so as to produce a well-compacted vertical mortar joint for the full shell thickness. Units shall set with all cells in a vertical position. The moisture content of the units when laid shall not exceed thirty-five percent of the total absorption as determined by laboratory test.

D. All masonry units shall be laid in stretcher (running) bond unless otherwise shown. Tool dense and neat.

E. Sizes shall be as specified and called for on the Drawings, and where "soaps" and "splits" are used, the space between these members and the backup material shall be slushed full of mortar.

F. Joints of all masonry shall be tooled in accordance with the following:

1. Wait until unit mortar is thumb-print hard before tooing joint. This may require as much as three hours in the shade and one hour in the sun in the summertime.

2. The required personnel of the Contractor shall be kept on the job after hours, if necessary, to properly tool joints.

3. Both vertical and horizontal joints shall be maintained uniform in spacing.

G. Surfaces shall be brushed as work progresses and maintained as clean as it is practical. Unfinished work shall be raked back where possible, and toothed only where absolutely necessary. Before leaving fresh or unfinished work, walls shall be fully covered and protected against rain and wind, and before continuing, work previously laid shall be swept clean. The tops of walls or other unfinished work shall be protected against all damage by the elements by means of waterproof paper, tarpaulins, or boards.

H. All anchorage, attachment, and bonding devices shall be set so as to prevent slippage and shall be completely covered with mortar or grout.

I. All ties and reinforcing for masonry shall be furnished and installed by the Contractor. Grout solid all courses and cells which are reinforced. Place joint reinforcing (fully embedded in mortar) at 16 inches maximum vertically and lap 6 inches between lengths and corner and tee pieces.
J. Bed and grout all steel, for equipment and machinery, and items coming in contact with masonry where grouting is required, including door bucks and frames set in masonry. The Contractor shall install all anchor bolts, base plates, and seats in masonry walls, and build in all items required for the completion of the building as they apply to masonry.

3.03 CLEANING

A. All holes in exposed masonry shall be pointed, and defective joints shall be cut out and repointed with mortar of same color as that of the original and adjoining work.

B. Exposed masonry shall be protected against staining by wall coverings, and excess mortar shall be wiped off the surface as the work progresses.

C. All masonry shall be cleaned with approved detergent solution in accordance with manufacturers printed directions. No acid or metal scrapers shall be used on masonry.

+++ END OF SECTION 04000 +++
SECTION 15100
VALVES AND APPURTEANCES

PART 1 GENERAL

1.01 SCOPE

A. The Contractor shall furnish all labor, materials, equipment and incidentals required and install complete and ready for operation all valves and appurtenances as shown on the Drawings and as specified herein.

B. Items included under this Section are:

1. Gate Valves
2. Butterfly Valves
3. Insert Valves
4. Valve Boxes
5. Tapping Sleeves and Gate Valves
6. Meter Box Sampling Station
7. Flange Insulating Gasket Kits
8. Electronic Locating and Marking Systems

1.02 DESCRIPTION OF SYSTEMS

A. All of the equipment and materials specified herein are intended to be standard for use in controlling the flow of water.

1.03 QUALITY ASSURANCE

B. Reference Standards: The design, manufacturing and assembly of elements of the products herein specified shall comply with the applicable provisions and recommendations of the latest editions of the following standards, except as otherwise shown on the Drawings or otherwise specified.

1. ANSI/AWWA C504 – Rubber-Seated Butterfly Valves
2. ANSI/AWWA C509 – Resilient-Seated Gate Valves for Water Supply Service
5. ANSI/AWWA C600 - Installation of Ductile-Iron Water Mains and Their Appurtenances.

1.04 SUBMITTALS

A. Submittals shall be in compliance with the requirements of the General Conditions of the Contract Documents. In addition, the following specific information shall be provided:

1. Complete shop drawings of all valves and appurtenances

2. Manufacturer’s certificate certifying that the products meet or exceed the specified requirements.

1.05 TOOLS

A. Special tools, if required for normal operation and maintenance shall be supplied with the equipment.

PART 2 PRODUCTS

2.01 MATERIALS AND EQUIPMENT

A. All valves and appurtenances shall be of the size shown on the Drawings and all equipment of the same type shall be from one manufacturer.

B. All valves and appurtenances shall have the name of the maker and the working pressure for which they are designed cast in raised letters upon some appropriate part of the body.

2.02 GATE VALVES (GV)

A. 20-Inches in Diameter and Smaller:

1. Gate valves shall be resilient seated type conforming to the requirements of AWWA C509 or AWWA C515.

2. Valves shall have a minimum working pressure of 250 psi.

3. Valve manufacturer shall submit an affidavit to the Engineer indicating valve compliance with all applicable AWWA standards.

4. Valves less than 4-inches in diameter shall have threaded ends. Larger valves shall be mechanical joint unless shown otherwise on the Drawings.

5. Valve shall be non-rising stem type with a 2-inch square operating nut and shall open right (clockwise).

6. All internal and external ferrous surfaces shall be coated with epoxy to a minimum thickness of 4 mils. The epoxy shall conform to ANSI/AWWA C550 and shall be applied electrostatically prior to assembly. Epoxy shall be NSF61 approved.
7. Valve shall have a ductile iron body, bonnet and stuffing box. All joints between valve parts, such as body and bonnet, bonnet and bonnet cover, shall be supplied with O-ring seals.

8. Valve wedges shall be symmetrical, made of ductile iron and totally encapsulated in rubber. Rubber shall be permanently bonded to the wedge per ASTM D429.

9. Valves shall be manufactured by American Flow Control, Mueller, or M & H Valve.

B. 24-Inches in Diameter and Larger:

1. Gate valves shall be resilient seated type conforming to the requirements of AWWA C509 or AWWA C515.

2. Valves shall have a minimum working pressure of 250 psi.

3. Valve manufacturer shall submit an affidavit to the Engineer indicating valve compliance with all applicable AWWA standards.

4. Valves shall be designed for horizontal installation with tracks and rollers, bypass valves, and bevel gear type operator.

5. Valve ends shall be mechanical joint type except where restrained joint ends are shown. Flanged joints shall meet the requirements of ANSI B16.1, Class 125.

6. Valve shall be non-rising stem type with a 2-inch square operating nut and shall open right (clockwise).

7. All internal and external ferrous surfaces shall be coated with epoxy to a minimum thickness of 4 mils. The epoxy shall conform to ANSI/AWWA C550 and shall be applied electrostatically prior to assembly. Epoxy shall be NSF61 approved.

8. Valve shall have a ductile iron body, bonnet and stuffing box. All joints between valve parts, such as body and bonnet, bonnet and bonnet cover, shall be supplied with O-ring seals.

9. Valve wedge shall be symmetrical, made of ductile iron and totally encapsulated in rubber. Rubber shall be permanently bonded to the wedge per ASTM D429.

10. Valves shall be non-rising stem type with a 2-inch square operating nut and shall open right (clockwise).

11. Valves shall be manufactured by American Flow Control, Mueller, or M & H Valve.

2.03 BUTTERFLY VALVES (BV)

A. Class 150 Valves:

1. Class 150 butterfly valves shall be short body design and shall be designed, manufactured and tested in accordance with the requirements of ANSI/AWWA C504 for Class 150B butterfly valves.

2. Valve bodies shall be ductile iron conforming to ASTM A536, Grade 65-45-12 or ASTM A126.
Grade B cast iron. Shafts shall be ASTM A276, Type 304 stainless steel, machined and polished. Valve discs shall be ductile iron, ASTM A536, Grade 65-45-12 or ASTM A126, Grade B cast iron.

3. The valve shall have a resilient seat.

B. Class 250 Valves:

1. Class 250 butterfly valves shall be short body design and shall be designed, manufactured, and tested in accordance with the requirements of ANSI/AWWA C504 for class 250B butterfly valves.

2. Valve bodies shall be ductile iron conforming to ASTM A536, Grade 65-45-12 or ASTM A126, Grade B cast iron. Shafts and shaft hardware shall be ASTM A564, Type 630 stainless steel, machined and polished. Valve discs shall be ductile iron, ASTM A536, Grade 65-45-12.

3. The valve shall have a resilient seat.

4. ANSI/AWWA C504 Section 5.1 testing requirements for class 250 valves shall be modified as follows:
 a. The leakage test shall be performed at a pressure of 250 psi.
 b. The hydrostatic test shall be performed at a pressure of 500 psi.
 c. Proof of design tests shall be performed and certification of such proof of design test shall be provided to the Engineer.

C. 24-inch and larger valves shall have a resilient seat that is located either on the valve disc or in the valve body. The valve seat shall be fully field adjustable and field replaceable.

D. Valves shall be installed with the valve shafts horizontal. Valves and actuators shall have seals on all shafts and gaskets on valve actuator covers to prevent the entry of water. Actuator mounting brackets shall be totally enclosed and shall have gasket seals.

E. Actuators

1. Valves shall be equipped with traveling nut, self-locking type actuators designed, manufactured and tested in accordance with ANSI/AWWA C504. Actuators shall be capable of holding the valve disc in any position between full open and full closed without any movement or fluttering of the disc.

2. Actuators shall be furnished with fully adjustable mechanical stop-limiting devices to prevent over travel of the valve disc in the open and closed positions. Actuators that utilize the sides of the actuator housing to limit disc travel are unacceptable.

3. Valve actuators shall be capable of withstanding a minimum of 450 foot pounds of input torque in either the open or closed position without damage.

F. The valve actuator shall be factory mounted on the valve by the valve manufacturer and shipped to the project site as a complete operating unit. Valve shall be designed to open right
G. Valve ends shall be mechanical joint type, except where flanged or restrained joint ends are shown on the Drawings. Flange joints shall meet the requirements of ANSI B16.1, Class 125.

H. Butterfly valves shall be manufactured by Mueller, Pratt or DeZurik.

2.04 BYPASS VALVES AND PIPING

A. Where shown on the Drawings, valves 24-inches in diameter and larger shall be installed with bypass piping and valve as specified in the following table:

<table>
<thead>
<tr>
<th>Valve Diameter (Inches)</th>
<th>Bypass Valve and Pipe Diameter (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>36</td>
<td>6</td>
</tr>
<tr>
<td>42</td>
<td>6</td>
</tr>
<tr>
<td>48</td>
<td>8</td>
</tr>
<tr>
<td>54</td>
<td>8</td>
</tr>
<tr>
<td>60</td>
<td>10</td>
</tr>
</tbody>
</table>

2.05 INSERT VALVES (IV)

A. Insert valves shall be a resilient seat wedge gate valve. Valve design shall allow the valve to be installed in an existing pressurized pipeline.

B. The valve shall have a ductile iron body, bonnet and wedge suitable for a design working pressure of 250 psi. Valve shall meet the requirements of ANSI/AWWA C515. Ductile iron shall meet the requirements of ASTM A536, Grade 65-45-12.

C. Valves 12-inches and smaller shall be capable of working on cast iron or ductile iron, class A, B, C and D pipe diameters without changing either top or bottom portion of the split valve assembly.

D. Resilient Wedge Gate Assembly

1. The construction of the resilient wedge shall comply with ANSI/AWWA C509.

2. The ductile iron wedge shall be fully encapsulated with EPDM rubber by a high pressure and high temperature compression or injection mold process. There shall be no exposed trim.

3. The resilient wedge shall seat on the valve body and not on the pipe to obtain the maximum seating and flow control results. The resilient wedge shall be totally independent of the carrier pipe. The resilient wedge shall not come into contact with the carrier pipe or depend on the carrier pipe to create a seal.

4. Pressure equalization on the downstream or upstream side of the closed wedge shall not be necessary to open the valve.

5. The wedge shall be symmetrical and seal equally well with flow in both directions.
6. The resilient wedge shall ride inside the body channels to maintain wedge alignment throughout its travel to achieve maximum fluid control regardless of high or low flow pressure or velocity. The resilient wedge shall have more support than the operating stem as the resilient wedge enters and exits the water way.

7. Valve shall have an oversized and unobstructed flow way.

E. Fusion Bonded Epoxy

1. The insert valve shall be fully epoxy coated on the interior and exterior. The fusion bonded coating shall be applied prior to assembly so that all bolt holes and body-to-bonnet flange surfaces are fully epoxy coated.

2. Valve shall be coated with a minimum of 8 mils epoxy in compliance with ANSI/AWWA C550 and certified to ANSI/NSF 61.

F. Gaskets and Triple O-ring Seals

1. The insert valve shall have triple O-ring stem seals. Two O-rings shall be located above and one O-ring located below the thrust collar.

2. The lower two O-rings shall provide a permanently sealed lubrication chamber. The upper O-ring shall insure that sand, dirt or grit cannot enter the valve to cause damage to the lower O-rings.

3. Side flange seals shall be of the O-ring type of either round, oval or rectangular cross-sectional shape.

G. Valve Stem and Thrust Washers

1. The gate valve stem and wedge nut shall be copper alloy in accordance with Section 4.4.5.1 of ANSI/AWWA C515

2. The stem shall have an integral thrust collar in accordance with Section 4.4.5.3 of ANSI/AWWA C515. Two-piece stem collars are not acceptable. The wedge nut shall be independent of the wedge and shall be held in place on three sides by the wedge to prevent possible misalignment.

3. Two thrust washers shall be used. One shall be located above the stem thrust collar and the other below the stem collar.

4. The stem shall be non-rising type with AWWA standard turns.

5. Valve operating nut shall be 2-inches square in accordance with ASTM A126, Class B. Valve shall open right (clockwise)

H. Hardware: Hardware materials shall develop the physical strength characteristics of ASTM A307 with dimensions conforming to ANSI B18.2.1

I. Split Restraint Devices: Split restraint devices shall be as specified in Section 02665.
J. The stuffing box, operating stem and resilient wedge (complete bonnet and moving parts) shall be removable and replaceable under pressure.

2.06 VALVE BOXES (VB) AND EXTENSION STEMS

A. All buried valves shall be equipped with valve boxes and lids unless access to the valve operator is provided by a manhole or vault.

B. Valve boxes shall be gray cast iron two-piece screw type with drop lids. Valve boxes shall be adjustable to 6-inches up or down from the nominal required cover over the pipe. Valve boxes shall have a five and one quarter (5-1/4) inch inside diameter. Valve boxes shall be of sufficient length that the bottom flange of the lower belled portion of the box is below the valve operating nut. Cast iron risers shall be provided as necessary. Valve boxes shall be model 8550 as manufactured by East Jordan Iron Works or equal.

C. Valve box lids shall be gray cast iron and shall have "WATER” cast into the top of the lid in ¾-inch (minimum) raised letters. Valve box lids shall weigh a minimum of 13 pounds. Valve box lids shall be model 6800 as manufactured by East Jordan Iron Works or equal.

D. Valve boxes, risers and lids shall be coated with black asphalt.

E. All valves shall be furnished with extension stems if operating nut is greater than four feet deep, to bring the operating nut to within 24-inches of the top of the valve box. Connection to the valve shall be with wrench nut coupling and a set screw to secure the coupling to the valve's operating nut. The coupling and square wrench nut shall be welded to the extension stem. Extension stems shall be stainless steel and shall be furnished by the valve manufacturer. Extension stems shall be sized by the valve manufacturer to withstand the maximum valve operator output.

F. Where pavement exists, the box shall be adjusted to finished grade. When valves are located out of pavement, the box shall be adjusted to finished grade and a concrete pad shall be poured around the box as detailed on the Drawings.

G. Stem guides shall be fully adjustable stem guides with bronze bushings, and shall be furnished by the valve manufacturer. Stem guides shall be installed as shown on the Drawings and shall conform to the extension guide spacing requirements as specified in AWWA/ANSI C501.

2.07 WRENCHES

A. Four tee handled wrenches of suitable length shall be furnished to operate all valves.

2.08 VALVE MARKERS (VM)

A. For installed valves, the Contractor shall furnish and install a concrete valve marker as detailed on the Drawings when directed by the Engineer, except on hydrant isolation valves. Valve markers shall be stamped “WATER”.

2.09 TAPPING SLEEVES AND GATE VALVES (TS&V)

A. Tapping sleeves for mains 12-inches in diameter and smaller shall be ductile iron of the split-sleeve, mechanical joint type. Tapping sleeves shall be equal to Mueller H-615.
B. Tapping sleeves for mains larger than 12-inches shall be of all stainless-steel construction.

C. The Contractor shall be responsible for determining the outside diameter of the pipe to be connected to prior to ordering the sleeve. The tapping sleeve shall be rated for 250 psi. working pressure

D. Valves shall be gate valves as specified in Paragraph 2.02 of this Section, with a flanged connection to the tapping sleeve and a mechanical joint connection to the branch pipe. The tapping sleeve shall be supplied by the valve manufacturer.

2.10 METER BOX SAMPLING STATION

A. Sampling station shall be meter box, retrofit style. Inlet and outlet connections shall be standard ¾-inch meter threads. The station shall consist of a standard meter resetter with the inlet leading up through the water system’s residential meter, through a check valve and then out an outlet.

B. The sampling station shall consist of a ½-inch lockable shut off valve leading to a valve riser and a 3/8-inch male quick disconnect valve. The valve and riser shall be positioned directly in line with the meter setter to avoid turning of the entire sampling station when pushing the sampling rod down on the valve.

C. Sampling station parts shall be brass.

D. Sampling station shall be furnished with a plastic PVC push on cap to protect the quick disconnect valve when not in use. The cap shall be sealed watertight with an O-ring below the quick disconnect valve.

E. A portable sampling rod shall also be provided with each sampling station. The sampling rod shall be furnished with a female inlet which shall couple to the male quick coupling, and a quarter turn valve. The rod shall be brass and shall have two outlets, one for flushing and the other for sampling.

F. The meter box sampling station and portable sampling rod shall be equal to Kupferle Foundry Company, Model 94WM

2.11 FLANGE INSULATION GASKET KITS

A. Flange insulating gasket kits shall be installed as required to isolate dissimilar metals when connecting to pipelines of different metal composition.

B. Flange kits shall consist of insulation gaskets, insulating sleeves and washers, nuts and bolts.

2.12 ELECTRONIC LOCATING AND MARKING SYSTEMS

A. The Contractor shall furnish and install an electronic locating and marking system for all buried water main piping. System shall consist of electronic markers buried above the water main and stand-alone locators.

B. The marker shall contain an antenna or three orthogonal tuned circuits. Electronic ball markers shall be made of high strength 4 1/2-inch (maximum) diameter plastic. Electronic ball markers shall be 3M EMS model 1403-XR as manufactured by 3M, Omni Markers as manufactured by Tempo or approved equal.
C. Full range markers shall be equal to EMS model 1252 as manufactured by 3M or approved equal.

D. The Contractor shall also furnish two (2) 3M Dynatel locators. Locators shall be 3M model 2250M-ID/UU3W-RT or approved equal.

PART 3 EXECUTION

3.01 INSTALLATION

A. All valves and appurtenances shall be installed in the locations shown, true to alignment and rigidly supported. Any damage to the above items shall be repaired to the satisfaction of the Engineer before they are installed.

B. Buried flanged or mechanical joints shall be made with cadmium plated bolts.

C. Prior to installation, valves shall be inspected for direction of opening clockwise, number of turns to open, freedom of operation, tightness of pressure containing bolting and test plugs, cleanliness of valve ports and especially seating surfaces, handling damage and cracks. Defective valves shall be corrected or held for inspection by the Engineer. Valves shall be closed before being installed.

3.02 LAYING AND JOINTING VALVES AND APPURTENANCES

A. Valves, fittings, plugs, and caps shall be set and joined to the pipe in accordance with the manufacturer’s recommendations for cleaning, laying and joining pipe. Twelve (12) inch and larger valves shall be provided with special support, such as crushed stone, concrete pads or a tamped trench bottom so that the pipe will not be required to support the weight of the valve.

B. In no case, shall valves be used to bring misaligned pipe into alignment during installation. Pipe shall be supported in such a manner as to prevent stress on the valve.

C. A valve box shall be provided on each buried valve. The valve box shall be set over the center of the valve operating nut and plumbed. The box shall not transmit shock or stress to the valve. The bottom portion of the lower belled portion of the box shall be placed below the valve operating nut. The flange shall be set on brick, so arranged that the weight of the valve box and superimposed loads will bear on the base and not on the valve or pipe. The valve box cover shall be flush with the surrounding surface or such other level as directed by the Engineer.

D. Underground valves shall be installed in vaults where indicated on the Drawings. The vault shall be precast or cast-in-place concrete as indicated on the Drawings. The valve box shall not transmit shock or stress to the valve and shall be as detailed on the Drawings. The valve vault cover shall be flush with the surface of the finished area or such other level as directed by the Engineer.

E. Settlement Joints: The first joint on all pipe connected to and outside of a valve vault shall be designed to allow differential settlement. The following joints will be allowed for settlement:

1. Steel Pipe shall use a bolted, sleeve style coupling with joint harness as specified in AWWA M11.

2. Ductile iron pipe shall use standard gasketed joints if unrestrained, or mechanically restrained gasketed joints if required by thrust restraint design.
F. Pipe within 20 feet of each side of a direct-buried butterfly valve shall be protected from vertical deflection to protect proper function of butterfly valve. Vertical deflection of pipe shall be limited to butterfly valve manufacturer recommendation.

3.03 BLOW-OFFS

A. Blow-offs shall be installed in locations as directed by the Engineer and as shown on the Drawings. Blow-offs shall not be connected to any sewer, submerged in any stream or creek, or be installed in any manner that will permit back siphonage into the water distribution system.

3.04 ELECTRONIC LOCATING AND MARKING SYSTEM

A. The Contractor shall install a ball marker at each bend, tee, valve and 500 feet of pipe length installed.

B. Ball markers shall be installed at a maximum depth of 5 feet.

C. Ball markers shall be secured to the pipe with cable ties as shown on the Drawings and shall be installed in accordance with the manufacturer’s instructions.

D. Full range markers shall be installed on bends, tees, valves and pipe with 5-feet of cover or greater.

3.05 TESTING

A. After installation, all valves and appurtenances shall be tested at least 1 hour at 250 psi, unless a different test pressure is specified. If any joint proves to be defective, it shall be repaired to the satisfaction of the Engineer.

++ + END OF SECTION 15100 ++ +
Section 682—Electrical Wire, Cable, and Conduit

682.1 General Description
This work includes furnishing and installing wire, cable, and conduit for roadway and structure lighting systems, complete or as indicated on the Plans.

682.1.01 Definitions
General Provisions 101 through 150.

682.1.02 Related References
A. Standard Specifications
 Section 680—Highway Lighting
 Section 922—Electrical Wire and Cable
 Section 923—Electrical Conduit
B. Referenced Documents
 General Provisions 101 through 150.

682.1.03 Submittals
Refer to Subsection 680.1.03.

682.2 Materials
Use materials that meet the requirements of Subsection 680.2 and the following:

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Wire and Cable</td>
<td>Section 922</td>
</tr>
<tr>
<td>Electrical Conduit</td>
<td>Section 923</td>
</tr>
</tbody>
</table>

682.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

682.3 Construction Requirements

682.3.01 Personnel
Refer to Subsection 680.3.01.

682.3.02 Equipment
General Provisions 101 through 150.

682.3.03 Preparation
General Provisions 101 through 150.

682.3.04 Fabrication
General Provisions 101 through 150.

682.3.05 Construction
Perform construction according to Subsection 680.3.05.

682.3.06 Quality Acceptance
Refer to Subsection 680.3.06.

682.3.07 Contractor Warranty and Maintenance
See Subsection 680.1.03.C, “Manufacturer’s Guarantees.”

682.4 Measurement
Measurement will conform to Subsection 680.4.
Section 682—Electrical Wire, Cable, and Conduit

682.4.01 Limits
General Provisions 101 through 150.

682.5 Payment
Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 682</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable, type___, AWG No.___</td>
<td>Per linear foot (meter)</td>
<td></td>
</tr>
<tr>
<td>Multi-conductor cable, type___ (No. of each size and AWG No.)</td>
<td>Per linear foot (meter)</td>
<td></td>
</tr>
<tr>
<td>Conduit-rigid (size)</td>
<td>Per linear foot (meter)</td>
<td></td>
</tr>
<tr>
<td>Conduit-nonmetallic, type (size)</td>
<td>Per linear foot (meter)</td>
<td></td>
</tr>
<tr>
<td>Conduit-encased, type (size) —(No. of ways)</td>
<td>Per linear foot (meter)</td>
<td></td>
</tr>
<tr>
<td>Conduit-flexible (size)</td>
<td>Per linear foot (meter)</td>
<td></td>
</tr>
<tr>
<td>Service pole riser</td>
<td>Per each</td>
<td></td>
</tr>
<tr>
<td>Electrical junction box</td>
<td>Per each</td>
<td></td>
</tr>
<tr>
<td>Lighting system</td>
<td>Per lump sum</td>
<td></td>
</tr>
</tbody>
</table>

682.5.01 Adjustments
General Provisions 101 through 150.
DEPARTMENT OF TRANSPORTATION

STATE OF GEORGIA

SPECIAL PROVISION

FULTON COUNTY

P.I. NO. 0012586

Section 702-Mulch

Add the following:

702.1 General Description
This work includes installation of mulch as shown on plans, and shall include, but is not limited to, the following components:
 A. Mulch

702.2 Materials
A. Mulch
 1. Type: Organic 50% ground/50% compost mulch @ an average depth of 2”

Add the following:

702.3 Payment
Mulch paid for at the square yard price per entire project. The payment is full compensation for installation of all mulch, including disposal of excavated materials, and the cost of furnishing all tools, safety devices, labor, equipment and all other necessary items to complete the work.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>163</td>
<td>Mulch</td>
<td>TN</td>
</tr>
</tbody>
</table>

End of Section 702
Add the following:

754.1 General Description

This Work includes furnishing and installing outdoor furniture as shown on plans, and shall include, but is not limited to, the following components:

A. Bicycle Rack

754.1.03 Submittals

A. Product Data

For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, finishes, field-assembly requirements, and installation details.

B. Shop Drawings

Show fabrication and installation details for bicycle racks.

C. Samples

For bicycle rack, with indicated finish

754.1.04 Quality Assurance

A. Regulatory Requirements

Comply with applicable provisions in ADA Accessibility Guidelines

Add the following:

754.2 Materials

Furnish only new materials and equipment for this work. Subject to compliance with requirements, provide the following or equal:

A. Bicycle Rack:

1. Basis-of-Design: City of Atlanta Standard “U” Bike Rack
2. Description: 1.90” OD metal tubing, 20” in total height
 1. Type: In-ground mount
 2. Finish: Black Powder Coat
Add the following:

754.3 Construction Requirements

This Work includes furnishing and installing bicycle racks as shown on plans, and shall include, but is not limited to, the following components:

Add the following:

754.3.03 Preparation

Examine areas and conditions, with Installer present, for compliance with requirements for correct and level finished grade, mounting surfaces, installation tolerances, and other conditions affecting performance. Proceed with installation only after unsatisfactory conditions have been corrected.

Owner shall approve all locations and layouts of each piece of furniture prior to permanent installation.

Add the following:

754.3.05 Construction

A. Installation

Comply with manufacturer’s written installation instructions, unless more stringent requirements are indicated.

Unless otherwise indicated, install bicycle racks after landscaping and paving have been completed.

Install bicycle racks level, plump, true, and securely anchored at locations indicated on Drawings.

B. Cleaning

After completing site furnishing installation, inspect components. Remove spots, dirt, and debris. Repair damaged finishes to match original finish or replace component.

754.3.06 Quality Acceptance

Obtain each bicycle rack through one source for a single manufacturer.

Add the following:

754.4 Measurement

The accepted furniture quantities are measured per each fixture in place in the completed work.

754.5 Payment

Bicycle Racks are paid for at the unit price bid per each unit complete and in place as specified. The payment is full compensation for all excavation, furnishing and installation of each unit, including preparation of concrete footing, disposal of excavated materials, and the cost of furnishing all tools, safety devices, labor, equipment and all other necessary items to complete the work.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 754</th>
<th>Bicycle Rack</th>
<th>Per Each</th>
</tr>
</thead>
</table>

End of Section 754
Add the following:

900.1 General Description

This Work includes furnishing and installing outdoor furniture as shown on plans, and shall include, but is not limited to, the following components:

A. Bollard

900.1.01 Definitions

A. ADA-ABA Guidelines:

B. Referenced Documents:

1. ASTM A 240
2. ASTM A 240M
3. ASTM A 276
4. ASTM A 500
5. ASTM A 666
6. ASTM F 593

900.1.02 Related References

A. Standard Specifications

1. Section 441- Miscellaneous concrete
2. Section 500- Concrete structures
3. Section 853- Reinforcement and tensioning steel

900.1.03 Submittals

A. Product Data

For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, finishes, field-assembly requirements, and installation details.

B. Shop Drawings

Show fabrication and installation details for bollards and removable bollards.
C. Samples
 For metal bollard, with indicated finish

900.1.04 Quality Assurance

A. Regulatory Requirements
 Comply with applicable provisions in ADA Accessibility Guidelines

Add the following:

900.2 Materials

Furnish only new materials and equipment for this work. Subject to compliance with requirements, provide the following or equal:

A. Bollards:
 1. Basis-of-Design product: Beltline Standard Bollard
 2. Description: 7”x7”x36” high stainless steel metal bollard
 1. Type: Fixed bollard with 1’-6” bollard sleeve set in a concrete footing.
 2. Hardware: Stainless steel fasteners
 3. Options: Beltline standard engineer grade reflective vinyl decal
 4. Finish: Beltline standard #4 stainless steel matte finish

Add the following:

900.3 Construction Requirements

This Work includes furnishing and installing bollards as shown on plans, and shall include, but is not limited to, the following components:

Add the following:

900.3.03 Preparation

Examine areas and conditions, with Installer present, for compliance with requirements for correct and level finished grade, mounting surfaces, installation tolerances, and other conditions affecting performance. Proceed with installation only after unsatisfactory conditions have been corrected.

Owner shall approve all locations and layouts of each piece of furniture prior to permanent installation.

Add the following:

900.3.05 Construction

A. Installation
 Comply with manufacturer’s written installation instructions, unless more stringent requirements are indicated.
 Complete field assembly of bollards, where required.
 Unless otherwise indicated, install bollards after landscaping and paving have been completed.
 Install bollards level, plump, true, and securely anchored at locations indicated on Drawings.

B. Cleaning
 After completing site furnishing installation, inspect components. Remove spots, dirt, and debris. Repair damaged finishes to match original finish or replace component.
900.3.06 Quality Acceptance
Obtain each bollard through one source for a single manufacturer.

Add the following:

900.4 Measurement
The accepted furniture quantities are measured per each fixture in place in the completed work.

900.5 Payment
Bollards are paid for at the unit price bid per each unit complete and in place as specified. The payment is full compensation for all excavation, furnishing and installation of each unit, including preparation of concrete footing, disposal of excavated materials, and the cost of furnishing all tools, safety devices, labor, equipment and all other necessary items to complete the work.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 900</th>
<th>Bollard</th>
<th>Per Each</th>
</tr>
</thead>
</table>

End of Section 900
Section 900-Granite Pavers

Add the following:

900.1 General Description

This Work includes construction of granite pavers as shown on plans, and shall include, but is not limited to, the following components:

A. Granite Pavers
B. Bedding Course
C. Joints
D. Sub-base

900.1.01 Definitions

General Provisions 101 through 150.

900.1.02 Related References

A. Standard Specifications

1. Section 430- Portland cement concrete pavement
2. Section 833- Joint fillers and sealers
3. Section 853- Reinforcement and tensioning steel.

B. Referenced Documents

1. ACI 530.1
2. ANSI A108.10
3. ANSI A118.7
4. ASCE 6
5. ASTM C 67
6. ASTM C 144
7. ASTM C 150
8. ASTM C 615
9. ASTM D 1056
10. TMS 602

900.1.03 Submittals
Section 900 – Granite Pavers

A. Product Data
1. For materials, other than water and aggregates.

B. Samples for unit pavers and joint materials.

900.1.04 Project Conditions

A. Samples
1. Weather Limitations for Mortar and Grout:
 a. Cold-Weather Requirements: Comply with cold-weather construction requirements contained in ACI
 530.1/ASCE 6/TMS 602.
 b. Hot-Weather Requirements: Comply with hot-weather construction requirements contained in ACI
 530.1/ASCE 6/TMS 602. Do not apply mortar to substrates with temperatures of 100 deg F and higher.

900.1.05 Quality Assurance

A. Shop Drawings
1. Where granite pavers are cut to fit a condition such as a location that follows the radius of the trail, indicate exact
 face size of pavers, and degree of angle for non-parallel sides.

B. Mockups
1. Build mockups of granite paving condition sufficient to demonstrate typical joints; surface color, pattern, and
 texture; and standard of workmanship.

C. Preinstallation Conference
1. Conduct conference at Project site.

900.2 Materials

A. Granite Pavers and Stair Treads: Square pavers made from granite complying with ASTM C 615.
 1. Product: Subject to compliance with requirements, provide the following:
 a. Color and Grain: Elberton Granite with medium grain, or approved equal.
 b. Finish: Thermal on all sides
 c. Thickness: 4 inches unless otherwise indicated.
 d. Face Size: 2’ x 2’ or as indicated on Drawings
 e. Radial Cuts: In locations where pavers have one or more sides that follow the radius of the trail, cut
 pavers to the radius or angle and size indicated on Drawings.

B. Accessories

C. Mortar Setting-Bed Materials
 1. Portland Cement: ASTM C150, Type I or Type II.
 3. Latex Additive: Manufacturer’s standard water emulsion, serving as replacement for part or all of gaging water,
 of type specifically recommended by latex-additive manufacturer for use with field-mixed Portland cement and
 aggregate mortar bed, and not containing a retarder.

D. Grout Materials
1. Polymer-Modified Tile Grout
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following or an approved equal:
 1. Bostik, Inc.
 2. Custom Building Products.
 3. Laticrete International, Inc.
 4. MAPEI Corporation.
 5. Prospec.
 7. Summitville Tiles, Inc.
 8. TEC, Specialty Construction Brands, Inc.

2. Grout Colors: As selected by Owners Representative from Manufacturer’s full range.

E. Mortar and Grout Mixes
1. General: Comply with referenced standards and with manufacturers’ written instructions. Discard mortars and grout if they have reached their initial set before being used.

3. Latex-Modified, Portland Cement Setting-Bed Mortar: Comply with written instructions of latex-additive manufacturer and as necessary to produce stiff mixture with a moist surface when bed is ready to receive pavers.

5. Packaged Grout Mix: Proportion and mix grout ingredients according to grout manufacturer’s written instructions.

A. Bedding Course
1. Type: Mortar Setting Bed
 a. Depth: 1” Thickness below pavers

C. Joints
1. 3/8” Mortar Joints

D. Sub-base
1. Per detail on sheet 38-003

Add the following:

900.3 Construction Requirements

900.3.01 Construction

A. Installation, General
1. Mix pavers from several pallets or cubes, as they are placed, to produce uniform blend of colors and textures.

2. Cut unit pavers with motor-driven stone saw equipment to provide pattern indicated and to fit adjoining work neatly. Use full units without cutting where possible.

3. Joint pattern: As indicated on Drawings.

4. Tolerances: Do not exceed 1/16 inch unit-to-unit offset from flush (lippage) nor 1/8 inch in 24 inches and ¼ inch in 10 feet from level, or indicated slope, for finished surface of paving.
Section 900 – Granite Pavers

5. Expansion and Control Joints: Provide for sealant-filled joints at locations and of widths indicated. Provide compressible foam filler as backing for sealant-filled joints unless otherwise indicated; where unfilled joints are indicated, provide temporary filler until paver installation is complete. Install joint filler before setting pavers. Sealant materials and installation are specified in Section 833 “Joint Fillers and Sealers”.

B. Mortar Setting-Bed Applications

2. Saturate concrete subbase with clean water several hours before placing setting bed. Remove surface water about one hour before placing setting bed.

3. Apply mortar-bed bond coat over surface of concrete subbase about 15 minutes before placing mortar bed. Limit area of bond coat to avoid its drying out before placing setting bed. Do not exceed 1/16-inch thickness for bond coat.

4. Apply mortar-bed over bond coat; spread and screed mortar bed to uniform thickness at subgrade elevations required for accurate setting of pavers to finished grades indicated.

5. Mix and place only that amount of mortar bed that can be covered with pavers before initial set. Before placing pavers, cut back, bevel edge, and remove and discard setting-bed material that has reached initial set.

6. Wet stone pavers before laying if the initial rate of absorption exceeds 30 g/30 sq. in. per minute when tested according to ASTM C 67. Allow units to absorb water so they are damp but not wet at time of laying.

7. Place pavers before initial set of cement occurs. Immediately before placing pavers on mortar bed, apply uniform 1/16-inch-thick bond coat to mortar bed or to back of each paver with a flat trowel.

8. Tamp or beat pavers with a wooden block or rubber mallet to obtain full contact with setting bed and to bring finished surfaces within indicated tolerances. Set each paver in a single operation before initial set of mortar; do not return to areas already set or disturb pavers for purposes of realigning finished surfaces or adjusting joints.

9. Spaced Joint Widths: Provide ¼-inch nominal joint width with variations not exceeding plus or minus 1/16 inch.

11. Grout joints as soon as possible after initial set of setting bed.
 a. Force grout into joints, taking care not to smear grout on adjoining surfaces.
 b. Tool exposed joints slightly concave when thumbprint hard.

12. Cure grout by maintaining in a damp condition for seven days unless otherwise recommended by grout or liquid-latex manufacturer.

900.3.06 Cleaning

Remove excess grout from exposed paver surfaces; wash and scrub clean.

900.3.07 Contractor

Contractor Warranty and Maintenance - General Provisions 101 - 150.

900.4 Measurement

Granite pavers complete, in place and accepted, is measured for payment by the square foot. The unit cost includes all components of the concrete subbase, mortar setting beds, joints, and all materials required for complete installation.

900.5 Payment

Granite pavers completed and accepted will be paid for at the full contract unit price per square foot. The payment is full compensation for all excavation, construction and installation of all pavers, including preparation of base materials and polymeric joint sand, disposal of excavated materials, and the cost of furnishing all tools, safety devices, labor, equipment and all other necessary items to complete the work.

Payment will be made under:
Section 900 – Granite Pavers

<table>
<thead>
<tr>
<th>Item No. 900</th>
<th>Granite Pavers</th>
<th>SF</th>
</tr>
</thead>
</table>

End of Section 900
Add the following:

999.1 General Description
Section includes the following application of stone masonry:
1. Anchored to concrete backup.

999.1.01 Definitions
General Provisions 101 through 150.

999.1.02 Related References
A. Standard Specifications
1. Section 834- Masonry materials
2. Section 833- Joint fillers and sealers

B. Referenced Documents
1. ACI 530.1
2. ASCE 6
3. ASTM A 240
4. ASTM A 666
5. ASTM C 144
6. ASTM C 150
7. ASTM C 207
8. ASTM C 270
9. ASTM C 615
10. ASTM D 1227
11. ASTM D 4479
12. TMS 602

999.1.03 Submittals
Section 999 – Granite Facing

B. Shop Drawings: Indicate concrete structural core wall and reinforcing; elevations at footing, concrete shelf, top of concrete core wall, and top of finished wall indicating stepping as required; anchorage material; embeds; surface pattern(s), mortar joints; and cap stone. Shop drawings should show full elevations of walls, including inside and outside corner conditions with embed plates, safety rails, and other information that relates to granite facing. Shop drawings for site metal items requiring accurate dimensional relationships to newly built or as-built construction, shall be prepared following a review and confirmation of existing conditions to remain. Provide same for existing or as-built measurements and conditions for areas scheduled to receive miscellaneous metal items by the installer. Fabricator of materials is responsible for verifying the accuracy of the measurements prior to fabrication.

C. Product Data: For each type of product indicated.

D. Samples:
 1. For each stone type indicated.
 2. For each color of mortar required.

E. Material Test Reports:
 1. Sealant Compatibility and Adhesion Test Report: From sealant manufacturer indicating that sealants will not stain or damage stone. Include interpretation of test results and recommendations for primers and substrate preparation needed for adhesion.

999.1.04 Quality Assurance

A. Mockups: Build a mockups for each pattern of stone masonry shown on Drawings, in a vertical orientation simulating a wall face; not less than 72 inches by 72 inches (30 inches by 72 inches for seat wall); to demonstrate typical joints, surface color, pattern, and texture, and standard of workmanship.
 1. Include stone coping at top of mockup.
 2. Include a sealant-filled joint at least 16 inches long in each mockup.
 3. Include stainless steel safety rail in the mockup.

B. Preinstallation Conference: Conduct conference at Project site.

999.1.05 Project Conditions

A. Protection of Stone Masonry: During construction, cover tops of walls, projections, and sills with waterproof sheeting at end of each day’s work.

B. Cold-Weather Requirements: Do not use frozen materials or materials mixed or coated with ice or frost. Do not build on frozen substrates. Comply with cold-weather construction requirements contained in ACI 530.1/ASCE 6/TMS 602.
 1. Cold-Weather Cleaning: Use liquid cleaning methods only when air temperature is 40 deg F and above and will remain so until masonry has dried.

999.2 Materials

Ensure that materials meet the requirements of the following specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stone for Masonry</td>
<td>834</td>
</tr>
<tr>
<td>Mortar and Grout</td>
<td>834</td>
</tr>
</tbody>
</table>
Section 999 – Granite Facing

A. Granite

 a. Products: Subject to compliance with requirements, provide the following, or an approved equal:

 i. Elberton Granite thick stone ashlar veneer; 3” nominal thickness; height and length as shown on Drawings; Finish A – thermal or polished, as shown on drawings.

 ii. Elberton Granite thick stone ashlar veneer; 3” nominal thickness; height and length as shown on Drawings; Finish B – split-face finish.

 iii. Elberton Granite cap stone; 4” thickness; height and length as shown on Drawings; thermal finish.

B. Mortar Materials

1. Portland Cement: ASTM C 150, Type I or II, except Type III may be used for cold-weather construction. Provide natural color or white cement as required to produce mortar color indicated.

2. Hydrated Lime: ASTM C 207, Type S.

3. Aggregate: ASTM C 144 and as follows.

 a. For pointing mortar, use aggregate graded with 100 percent passing No. 16 sieve.

4. Water: Potable

C. Veneer Anchors

1. Materials:

 a. Stainless-Steel Sheet: ASTM A 240 or ASTM A 666, Type 304.

2. Metal Anchors: Not less than 0.030-inch-thick by 7.8-inch-wide stainless-steel sheet with corrugations having a wavelength of 0.3 to 0.5 inch and an amplitude of 0.06 to 0.10 inch.

 a. Dovetail Masonry Anchor – utilize product of one of the following, or an approved equal:

 i. Manufacturer: Hohmann and Barnard, Inc. Product: 315 Flexible Dovetail Brick Tie.

D. Miscellaneous Masonry Accessories

1. Asphalt Dampproofing: Cut-back asphalt complying with ASTM D 4479, Type I or asphalt emulsion complying with ASTM D 1227, Type III or IV.

E. Masonry Cleaners

1. Proprietary Acidic Cleaner: Manufacturer’s standard-strength cleaner designed for removing mortar and grout stains, efflorescence, and other new construction stains from stone masonry surfaces without discoloring or damaging masonry surfaces; expressly approved for intended use by cleaner manufacturer and stone producer.

 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following, or an approved equal:

 i. Diedrich Technologies, Inc.

 ii. Dominion Restoration Products.

 iii. EaCo Chem, Inc.

 iv. Hydrochemical Techniques, Inc.

 v. Prosoco, Inc.
F. **Granite**

2. **Granite**: Comply with ASTM C 615.

 a. **Products**: Subject to compliance with requirements, provide the following, or an approved equal:

 i. Elberton Granite thick stone ashlar veneer; 3” nominal thickness; height and length as shown on Drawings; Finish B – split-face finish.

 ii. Elberton Granite cap stone; 4” thickness; height and length as shown on Drawings; thermal finish.

G. **Mortar Materials**

5. **Portland Cement**: ASTM C 150, Type I or II, except Type III may be used for cold-weather construction. Provide natural color or white cement as required to produce mortar color indicated.

6. **Hydrated Lime**: ASTM C 207, Type S.

7. **Aggregate**: ASTM C 144 and as follows.

 a. For pointing mortar, use aggregate graded with 100 percent passing No. 16 sieve.

8. **Water**: Potable

H. **Veneer Anchors**

3. **Materials**:

 a. Stainless-Steel Sheet: ASTM A 240 or ASTM A 666, Type 304.

4. **Metal Anchors**: Not less than 0.030-inch-thick by 7.8-inch-wide stainless-steel sheet with corrugations having a wavelength of 0.3 to 0.5 inch and an amplitude of 0.06 to 0.10 inch.

 a. **Dovetail Masonry Anchor**—utilize product of one of the following, or an approved equal:

 i. Manufacturer: Hohmann and Barnard, Inc. Product: 315 Flexible Dovetail Brick Tie.

I. **Miscellaneous Masonry Accessories**

2. **Asphalt Dampproofing**: Cut-back asphalt complying with ASTM D 4479, Type I or asphalt emulsion complying with ASTM D 1227, Type III or IV.

J. **Masonry Cleaners**

2. **Proprietary Acidic Cleaner**: Manufacturer’s standard-strength cleaner designed for removing mortar and grout stains, efflorescence, and other new construction stains from stone masonry surfaces without discoloring or damaging masonry surfaces; expressly approved for intended use by cleaner manufacturer and stone producer.

 a. **Manufacturers**: Subject to compliance with requirements, provide products by one of the following, or an approved equal:

 i. Diedrich Technologies, Inc.

 ii. Dominion Restoration Products.

 iii. EaCo Chem, Inc.

 iv. Hydrochemical Techniques, Inc.

 v. Prosoco, Inc.

K. **Mortar Mixes**
Section 999 – Granite Facing

1. General: Do not use admixtures unless otherwise indicated.
 a. Do not use calcium chloride.

 a. Mortar for Setting Stone: Type N.
 b. Mortar for Pointing Stone: Type O.

L. Fabrication

1. Cut stone to produce pieces of thickness, size, and shape indicated, including details on Drawings. Dress joints (bed and vertical) straight and at right angle to face unless otherwise indicated.

2. Shape stone for type of masonry (pattern) as follows:
 a. Sawed-bed, range ashlar with uniform course heights and uniform lengths as shown on Drawings.

3. Finish exposed faces and edges of stone to comply with requirements indicated for finish and to match approved samples and mockups.
 a. Face Finish A: Thermal or Polished, as shown on Drawings.
 b. Face Finish B: Split-face.
 c. Finish for Copings: Thermal.
 i. Finish exposed ends of copings same as other exposed faces.

999.3 Construction Requirements

A. Preparation
1. Coat concrete backup with asphalt dampproofing. Refer to Section 531.

B. Setting of Stone Masonry, General
1. Perform necessary field cutting and trimming as stone is set.
 a. Use power saws to cut stone that is fabricated with saw-cut surfaces.
 b. Use hammer and chisel to split stone that is fabricated with split surfaces.

2. Sort stone before it is placed in wall to remove stone that does not comply with requirements relating to aesthetic effects, physical properties, or fabrication, or that is otherwise unsuitable for intended use.
3. Arrange stones in range ashlar pattern with uniform course heights, uniform lengths, and uniform joint widths as shown on the Drawings.
4. Arrange stones with finish variations uniformly dispersed for an evenly patterned appearance.

5. Maintain uniform joint widths except for variations due to different stone sizes and where minor variations are required to maintain bond alignment if any. Lay walls with joints not less than 3/8 inch at narrowest points or more than ½ inch at widest points.
6. Provide sealant joints of widths and at locations indicated.
 a. Keep sealant joints free of mortar and other rigid materials.
 b. Materials and procedures for sealing joints are specified in Section 833 “Joint Fillers and Sealants.”

C. Construction Tolerances
1. Variation from Plumb: For vertical lines and surfaces, do not exceed 3/8 inch in 20 feet or more. For external corners, expansion joints, control joints, and other conspicuous lines, do not exceed ¼ inch in 20 feet or ½ inch in 40 feet or more.
2. Variation from Level: For bed joints, horizontal grooves, and other conspicuous lines, do not exceed ¼ inch in 20 feet or ½ inch in 40 feet or more.

3. Variation of Linear Layout Line: For position shown in plan, do not exceed ½ inch in 20 feet or ¾ inch in 40 feet or more.

D. Installation of Anchored Stone Masonry

1. Anchor stone masonry to concrete with corrugated-metal veneer anchors unless otherwise indicated. Secure anchors by inserting dovetailed ends into dovetail slots in concrete.

2. Embed veneer anchors in mortar joints of stone masonry at least halfway, but not less than 1-1/2 inches, through stone masonry and with at least 5/8-inch cover on outside face.

3. Provide two (2) anchors per stone positioned 9 inches from ends on alternating horizontal courses of stone masonry. Install additional anchors within 12 inches of sealant joints and at perimeter of wall at intervals not exceeding 12 inches.

4. Set stone in full bed of mortar with full head joints unless otherwise indicated. Build anchors into mortar joints as stone is set.

5. Rake out joints for pointing with mortar to depth of not less than ¾ inch. Rake joints to uniform depths with square bottoms and clean sides.

E. Pointing

1. Prepare stone-joint surfaces for pointing with mortar by removing dust and mortar particles. Where setting mortar was removed to depths greater than surrounding areas, apply pointing mortar in layers not more than 3/8 inch deep until a uniform depth is formed.

2. Point stone joints by placing and compacting pointing mortar in layers not more than 3/8 inch deep. Compact each layer thoroughly and allow to become thumbprint hard before applying next layer.

3. Tool joints, when pointing mortar is thumbprint hard, with a smooth jointing tool to produce the following joint profiles:
 a. Vertical Joint Profile: Smooth, flat face flush with edges of stone.
 b. Horizontal Joint Profile: Smooth, flat face recessed ¼ inch below edges of stone (raked joint.)

F. Adjusting and Cleaning

1. In-Progress Cleaning: Clean stone masonry as work progresses. Remove mortar fins and smears before tooling joints.

2. Final Cleaning: After mortar is thoroughly set and cured, clean stone masonry as follows:
 a. Remove large mortar particles by hand with wooden paddles and nonmetallic scrape hoes or chisels.
 b. Test cleaning methods on mockup; leave one-half of panel uncleaned for comparison purposes.
 c. Protect adjacent stone and nonmasonry surfaces from contact with cleaner by covering them with liquid strippable masking agent, polyethylene film, or waterproof masking tape.
 d. Wet wall surfaces with water before applying cleaner; remove cleaner promptly by rinsing thoroughly with clear water.
 e. Clean stone masonry with proprietary acidic cleaner applied according to manufacturer’s written instructions.

G. Excess Materials and Waste

1. Disposal as Fill Materials: Dispose of clean masonry waste, including mortar and excess or soil-contaminated sand, by crushing and mixing with fill material as fill is placed.
 a. Do not dispose of masonry waste as fill within 48 inches of finished grade.

999.4 Measurement
The accepted granite facing quantities are measured per square foot of granite facing. Per each square foot in place in the completed work. The unit price includes the cost of the wall coping.

999.5 Payment

Granite facing is paid for at the unit price bid per each unit complete and in place as specified, and includes the cost of wall coping. The payment is full compensation for all excavation, furnishing, and installation of each square foot of wall, including preparation of concrete footings and core walls, concrete reinforcement, and grout. Also includes disposal of excavated materials, and the cost of furnishing all tools, safety devices, labor, equipment and all other necessary items to complete the work.

Payment will be under:

<table>
<thead>
<tr>
<th>Item No. 999</th>
<th>Granite Facing</th>
<th>Square Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>